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Abstract

In this paper, we present a spectral clustering approach to explore
the possibility of discovering structure from audio data. To ap-
ply the Ng-Jordan-Weiss (NJW) spectral clustering algorithm to
speaker diarization, we propose some domain specific solutions to
the open issues of this algorithm: choice of metric; selection of
scaling parameter; estimation of the number of clusters. Then, a
postprocessing step – “Cross EM refinement” – is conducted to
further improve the performance of spectral learning. In exper-
iments, this approach has performance very similar to the tradi-
tional hierarchical clustering on the audio data of Japanese Parlia-
ment Panel Discussions, but it runs much faster than the latter.
Index Terms: Speaker Diarization, Spectral Clustering, Cross EM
refinement, BIC.

1. Introduction
Speaker diarization (also called speaker segmentation) is the task
of segmenting a multi-speaker audio document into homogeneous
parts and then clustering the resulting parts into groups which each
contains the voice of a single speaker. With the explosive growth
of audio documents both on the Internet and in corporate informa-
tion archives, speaker diarization techniques have been receiving
more and more attentions because they are valuable enabling tools
for developing various advanced audio access and playback func-
tionalities. To promote research in this area, NIST has initiated
the speaker diarization contest 1 since 2002, and the number of
participants for the contest has been increasing steadily each year.

Given an unknown audio document, generally there is no prior
knowledge available on the number nor the profiles of the speak-
ers within the document. Therefore, we must employ unsupervised
clustering techniques to detect the number of speakers, and to seg-
ment/cluster different speakers appropriately.

There is a large volume of literature on speaker diarization re-
search. Most methods use a mixture of Gaussians to model audio
segments, and use hierarchical clustering along with certain model
selection metrics (e.g. BIC) to group the audio segments into an
appropriate number of clusters [1, 2]. Tranter and Reynolds pre-
sented a hybrid system developed to allow the benefits of their
CUED and MIT-LL systems to be exploited in a single system [3].
Jin and Schultz used a tied GMM for both segmentation and clus-
tering, which is also adopted as part of our speaker diarization sys-
tem due to its accuracy and speed [4]. Auguera, et al. introduced
a “purification” module that tries to keep the clusters acoustically
homogeneous throughout the hierarchical clustering process [5].

However, to the best of our knowledge, there are only a few
methods (e.g. [6]) which use spectral clustering to explore the
structure of audio data, especially in speaker diarization. Spectral

1http://www.nist.gov/speech/tests/rt/rt2006/spring/
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tering can handle very complex and unknown cluster shapes
hich cases the commonly used methods such as K-means and
ing a mixture model using EM may fail. It relies on analyzing
igen-structure of an affinity matrix, rather than on estimating

xplicit model of the data distribution [7, 8, 9]. In this paper, we
y the Ng-Jordan-Weiss (NJW) algorithm [7], a typical spectral
tering approach, to explore the possibility of discovering struc-
from audio data which is high dimensional and temporal. The
ity matrix is built on the KL distance which is approximated
d on unscented transformation [10] to save on computational
. The scaling parameter is selected by considering the statis-
of the distances, and the number of clusters is determined by
ching the drop in the magnitude of the eigenvalues or by ro-
g the normalized eigenvectors [8]. This approach generates
lts comparable to that of hierarchical clustering but achieves
h higher speed than the latter. We also conduct a postprocess-
step called “cross EM refinement” (detailed in our previous
k [11]) that is based on the idea of cross validation and EM
rithm, which further improves the performance.
The rest of the paper is organized as follows. Section 2 pro-
s the overview of our speaker diarization system. Section 3
ribes our solutions to the open issues in spectral clustering so
it can be applied to audio data. Section 4 presents the experi-
tal evaluations, and section 5 compares spectral clustering and
archical clustering and concludes the paper.

. Speaker Diarization System Overview
speaker diarization system consists of the following major

s:
1. Silence detection to detect and remove the silent segments
se time length is above the predefined threshold.
2. Feature extraction to compute the 20 mel-frequency cepstral
ficients (MFCC), whereby to form the feature vector for each
silent audio segment.
3. Segmentation of each non-silent audio segment into ho-
enous segments based on the Baysian Information Criteria
) [1, 2, 11]. This segmentation algorithm intends to yield the
f homogenous segments which maximizes the BIC metric.
4. Speech segment detection to detect the audio segments that
ain human speech only. This is achieved by a binary classifier
to classify each audio segment into either the speech or non-
ch class. The resulting speech segments are used as input to
ubsequent clustering operations.
5. Tied GMM construction [4] to train a background Gaussian
ture model on the entire set of speech segments, and then ob-
the GMM coefficients for each speech segment using the EM
rithm while keep the Tied GMM Gaussian components.
6. Local clustering to merge similar adjacent speech segments
n their KL distance is above a predefined threshold. This local
tering is based on the observation that it is highly probable that
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adjacent segments belong to the same speaker.
7. Spectral clustering to group the speech segments into the

number of clusters, after carefully building the affinity matrix and
estimate the number of clusters.

8. “Cross EM refinement” [11] to refine the spectral cluster-
ing result. This is based on the idea of cross validation and EM
algorithm.

In step 6 of the above operations, local clustering is introduced
before spectral clustering to both improve the performance and re-
duce the computational cost of spectral clustering. Firstly, the suc-
cess of spectral clustering depends heavily on the accuracy of the
metric measurement, in this paper, the KL distance. Local cluster-
ing will increase the average length and produce better estimation
of GMMs of the segments, and in turn improve the accuracy of
the KL distance. The effect is salient especially when the lengthes
of many segments are less than 3 seconds before local clustering.
Secondly, local clustering decreases the number of the segments,
which in turn reduces the computational cost of spectral clustering
because the cost depends only on the number but not the length
of the segments. Our experimental evaluations have shown that
the number of audio segments will be reduced by nearly 66% af-
ter local clustering. Therefore, the average length of the segments
increases to greater than 3 seconds, and the total time complexity
of spectral clustering decreases to about 1/9 of the original com-
plexity, compared to the operation without local clustering.

In step 8 of the above operations, we perform “Cross EM re-
finement” [11] because the local and spectral clustering algorithms
generate speaker diarization results which still have large room for
improvement due to the following reasons. First, estimation of
GMMs of the segments involves approximations which cause er-
rors, especially when the audio segments are very short (less than
3 seconds). Second, the KL distance is approximated based on
unscented transformation [10] which introduces errors. Third, the
local clustering algorithm may induce some errors as well. The
refinement effect is very salient especially when the spectral clus-
tering generates relatively bad results.

3. Spectral Clustering
Spectral clustering can handle very complex and unknown cluster
shapes, and in this case the commonly used methods such as K-
means and learning a mixture model using EM may fail. It relies
on analyzing the eigen-structure of a affinity matrix, rather than
on estimating an explicit model of data distribution [7, 8, 9]. It is
expected that it can also handle high dimensional audio data. We
use a modification of the Ng-Jordan-Weiss (NJW) algorithm [7].
For completeness of the text we first briefly review their algorithm.

Given a set of points (speech segments) S = {s1, . . . , sn}
that we want to cluster into k subsets:

1. Form the affinity matrix A ∈ Rn×n defined by Aij =
exp(−d2(si, sj)/σ2) if i �= j, and Aii = 0, where
d(si, sj) is distance function and σ2 is scaling parameter.

2. Define D to be the diagonal matrix whose (i, i)-element
is the sum of A’s i-th row, and construct the normalized
affinity matrix L = D−1/2AD−1/2.

3. Manually or automatically select the number of clusters k.

4. Find x1, x2, . . . , xk, the k largest eigenvectors of L, and
form the matrix X = [x1, x2, . . . , xk] ∈ Rn×k.

5. Re-normalize the rows of X to have unit length yielding
Y ∈ Rn×k, such that Yij = Xij/(

∑
j X2

ij)
1/2.
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. Treat each row of Y as a point in Rk and cluster them into
k clusters via k-means.

. Assign the original point si to cluster j if and only if row i
of the matrix Y was assigned to cluster j.

As to this algorithm, there are still three open issues to be
ed: (1) choice of metric, i.e. definition of d(si, sj), and the
algorithm to calculate it; (2) Selection of the appropriate scale
) Estimating automatically the number of clusters, i.e, k. We

ent our domain specific solutions as follows.

KL Distance
tral clustering, as well as most of other clustering methods,
nds heavily on the choice of metric. Since the length of the
o segments vary, the commonly used Euclidean metric may
in this case. And a natural distance measure between two audio

ents si and sj is KL distance [10]:

KL(f ||g) =

∫
f(x) log

f(x)

g(x)
dx (1)

=

∫
f log fdx −

∫
f log gdx (2)

re distributions f and g are GMMs of si and sj . To make
distance symmetric, we take the KL distance as d(si, sj) =
(f ||g) + KL(g||f).
There are no closed form expression for the KL distance of two
Ms. One approach is Monte-Carlo simulations to approximate
However, the Monte-Carlo techniques have such drawbacks
tensive computational cost, slow converges properties, differ-
pproximations by different computations, and requirement of

inal data. Therefore the more efficient approximation based
nscented transformation [10] is used in this paper. Unlike the
te-Carlo approach that chooses sample points randomly, the
ented transformation considers only the “sigma” points.

xi,j = μi + (
√

dΣi)j j = 1, . . . , d (3)

xi,d+j = μi − (
√

dΣi)j j = 1, . . . , d (4)

re d is the dimension of x, μi and Σi are the mean and covari-
of the i-th component of the GMM, and (

√
dΣi)j is the j-th

mn of
√

dΣi. Then given f(x) =
∑c

i=1 αifi(x) is a GMM,

∫
f log gdx ≈ 1

2d

c∑
i=1

αi

2d∑
j=1

log g(xi,k) (5)

sidering that all the GMMs of the segments have the same
ssian components (components of the Tied GMM), the compu-
nal cost can be further reduced by calculating beforehand the
abilities of each Gaussian component at all the sigma points.

Scale Parameter
scaling parameter σ2 is some measure of when two points are
idered similar and controls how rapidly the affinity Aij falls
ith the distance between si and sj . Usually σ2 is manually

cted as a constant. Ng et al. [7] suggested selecting σ2 au-
atically by searching over a range of values of σ2, and pick
value that gives the tightest clusters of the rows of Y . This
eases the computational cost and leaves the range of σ2 to be
ified manually.
Instead of selecting a single constant scaling parameter, we
ulate a scaling parameter σij for each pair of data points si
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Figure 1: Eigenvalues. The top 40 eigenvalues of L of two audio
records. The vertical lines indicate the ground truth and locate
closely to the drastic drops

and sj by considering the statistics of the distances from si and sj

to all other data points. Thus the affinity between the pair of data
points si and sj can be written as:

Aij = exp(−d2(si, sj)

σ2
ij

) (6)

In this paper, we choose σij as the multiplication of two vari-
ances of two groups of distances

σ2
ij = β

√
var(d(si, ·))var(d(·, sj)) (7)

where β is a predefined scalar and var(·) calculates the variance
and d(si, ·) are distances from si to all of other data points (d(·, sj)
is similar). The selection of scaling parameters σij’s has two ad-
vantages: firstly the distances are normalized so that the multiple
scale problem can be solved to some extent; secondly it is done
fully automatically.

3.3. Estimating the Number of Clusters
In speaker diarization, there is no prior knowledge available on the
number of the speakers in the audio records. It means the number
of clusters has to be estimated automatically. This can be done by
analyzing the magnitude of the eigenvalues or the structure of the
eigenvectors of the normalized affinity matrix L [8].

According to the theory of the spectral clustering [7], the num-
ber of clusters should be equal to the multiplicity of the eigenvalue
1 if the data-set is “clean” (the clusters are cleanly separated).
However, the audio data in this paper captured in reality is far from
“clean”, so the top eigenvalues may deviate from 1. A tricky ap-
proach is to search for a drastic drop (where gradient is greater
than a predefined threshold) in the magnitude of the eigenvalues.
Though it lacks theoretical justification, it works well for the audio
data in our experiments. Figure 1 gives two examples where the
real number of clusters (vertical lines) locate very closely to the
drastic drops.

We also try an alternative approach proposed by Zelnik-Manor
et al. [8] which relies on analyzing the structure of the eigenvec-
tors. It generates results similar to that of the eigenvalue approach
but requires much more computational cost than the latter

4. Experiments
The test data we used in our experiments are audio records of
Japanese Parliament Panel Discussions. There are nine such audio
records with the lengths ranging from 20 to 45 minutes (See Table
1, columns 1 ∼ 3). All the nine audio files were labelled by human
annotators to form the ground truth for performance evaluations.
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re 2: Comparisons of the performance without “Cross EM re-
ent” of our system and the baseline system . (a) Comparisons

e error rate; (b) Comparisons of the purity.

audio segment can take one of the following three labels:
ce, non-speech, and speech with a unique speaker ID. Only
audio file was used for tuning the parameters of our speaker
ization system.
We use the following “diarization error” defined by the NIST
Transcription Evaluation [12] as our evaluation criterion:

derr =
Tfalarm + Tmiss + Twrong

Tref
(8)

re Tfalarm is the total length of the non-speech segments that
classified as speech, Tmiss is the total length of the speech
ents classified as either non-speech or silence, Twrong is the
length of the speech segments that were correctly classified
eech, but clustered into wrong speaker groups, and Tref is the
length of all speech segments in the ground truth. In addition

err, we also introduce the following purity metric:

purity =
pure time

total system speaker time
(9)

each speaker identified by the system, we find a reference
ker from the ground truth that shares the longest time with
system speaker. The pure time is the sum of all these shared
s. The purity metric is useful for the applications which care
about over-segmentation (i.e., one speaker may be separated
multiple clusters) but more about the “cleanliness” of each

ter.
Table 1 shows the performance of our speaker diarization sys-
on the nine Japanese Parliament audio records. To reveal the

ctiveness of this spectral clustering approach, we have also im-
ented the speaker diarization system based on traditional hi-

chical clustering [11, 4], and it was tested using the same test
set. This implementation is equivalent to the current state-of-

art speech diarization approaches [4], and serves as the base-
for performance comparisons. The performance scores of the
systems are displayed shoulder by shoulder in the table.
The average derr and purity are 11.25% and 89.14% respec-
y for our system with spectral approach. Compared with the
age performances of 10.98% and 89.67% for the baseline sys-
it can be seen that the two systems generate very similar re-
. Figure 2 uses the bars to illustrate the performance compar-
s of the two systems. On average our system is worse than the
line system by only 0.3% in derr and by only 0.5% in purity.
ever, the standard deviation of the error rate of our system that
09% is much smaller than that of the baseline system which is
%. It means that our system has more stable performance than
aseline system. Moreover, our system is much faster than the
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baseline system (see Section 5). Therefore these two methods are
really comparable on the Japanese Parliament audio dataset. It is
hard to predict which one remarkably outperforms the other.

It worth mentioning that our “Cross EM refinement” does help
to improve the performance for both our system and the baseline
system. On average it achieves a relative improvement of 10% for
derr and 1% for purity in our system, and 21.6% for derr and
1% for purity in the baseline system. The average improvements
are not very salient because the results of some audio records (e.g.
audio 2, 3, and 8) are already quite good even without the EM
refinement. However, for those audio records that the two systems
cannot handle well (i.e. audio 1, 4, and 9 for our system, and audio
1, 6 and 9 for the baseline system), the relative improvement is as
much as 56% for derr and 2% for purity.

5. Discussions and Conclusions
Here we qualitatively compare the computational cost of the spec-
tral clustering approach and of the hierarchical approach. As to the
spectral approach, the computational cost of eigen-decomposition
and k-mean clustering can be ignored, and most of the cost falls
onto the calculation of affinity matrix which after unscented trans-
formation approximation is drastically reduced. While hierarchi-
cal clustering needs O(n3) operations of calculating ΔBIC and
estimating GMM [11], therefore it is much slower than our spec-
tral clustering approach.

Spectral clustering is a global approach and optimal with re-
spect to some criteria while hierarchical clustering is a greedy ap-
proach and achieves a suboptimal solution. From this point of
view, the spectral approach should have higher performance than
the hierarchical approach. It is expected to be true if the affinity
matrix exactly characterizes the data. However, KL distances are
far from accurate if the average length of the segments is too short
(< 3 seconds), while hierarchical clustering avoids this problem
by accumulating the segments in the iterative steps. In this case,
hierarchical clustering may achieve much better performance. For-
tunately, thanks to our “Local Clustering” (see Section 2), the av-
erage length of the segments is much greater than 3 seconds on the
Japanese Parliament audio data, so that our spectral approach has
performance very close to that of the hierarchical approach.

In conclusion, we present a spectral learning approach to
speaker diarization. Some domain specific solutions are proposed
to solve the open issues of spectral clustering, and then applied
to the audio records of Japanese Parliament Panel Discussions. It
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rates similar results as the hierarchical approach but it is much
r than the latter. A postprocessing step (“Cross EM refine-
t”) further improves the performance of our system.
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Table 1: Speaker Diarization Error and Purity of both spectral and hierarchical clustering, with and without cross EM refinement.

Spectral Clustering Hierarchical Clustering
File Information Without EM Refinement With EM Refinement Without EM Refinement With EM Refinement

file len(sec.) #spkrs error (%) purity (%) error (%) purity (%) error (%) purity (%) error (%) purity (%)

1 2366 8 16.47 83.77 13.90 86.35 20.59 84.66 14.37 88.00
2 2201 7 9.79 90.21 9.55 90.55 6.43 90.21 6.18 90.51
3 1878 7 8.65 91.54 9.11 91.18 6.35 90.26 5.10 91.07
4 1475 8 13.03 86.97 10.59 89.52 4.86 91.42 5.73 90.61
5 2457 9 9.88 91.32 8.73 91.82 6.90 90.85 4.90 91.75
6 1876 9 12.07 88.57 11.30 89.68 13.94 91.48 6.86 91.03
7 1938 11 8.91 91.09 7.03 93.07 7.22 90.16 6.45 90.95
8 1260 6 7.41 92.59 6.91 93.31 3.07 93.30 3.19 93.20
9 2699 11 15.04 86.24 14.64 86.73 29.43 84.72 26.27 84.51

avg. 2017 8.4 11.25 89.14 10.20 90.25 10.98 89.67 8.78 90.18
std. 464.6 1.74 3.09 2.95 2.73 2.48 8.76 2.99 7.26 2.52
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