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Abstract

In this paper the speaker identification system developed at Athens
Information Technology is presented. It is based on the Gaussian
Mixture modeling of the Mel-Frequency Cepstral Coefficients of
speech. Starting from this basic algorithm, we describe and discuss
two significant modifications that have resulted in performance en-
hancements, in terms of both processing speed and identification
accuracy. We present the performance of our system in the recent
CLEAR 2006 evaluation workshop and also discuss approaches
to further improve our system by fusing decisions derived from a
multitude of sensors in a multi-microphone setup.
Index Terms: far-field speaker identification, gaussian mixture
models, principal component analysis, microphone arrays.

1. Introduction
Person identification is of paramount importance in security,
surveillance, human-computer interfaces and smart spaces. Hence,
the evaluation of different recognition algorithms under common
evaluation methodologies is very important. Even though the ap-
plications of person recognition vary, the evaluations have mostly
focused on the security scenario, where training data are few but
recorded under close-field conditions. An example of this for faces
is the Face Recognition Grand Challenge [1], where facial images
are of high resolution (about 250 pixels distance between the cen-
ters of the eyes).

The CLEAR person identification evaluations, following the
Run-1 evaluations [2] of the CHIL project [3], focus on the surveil-
lance and smart spaces applications, where training can be abun-
dant, but on the other hand the recording conditions are far-
field: wall-mounted microphone arrays record speech and cameras
mounted on room corners record faces. These two modalities are
used, either stand-alone or combined, to recognize people in au-
diovisual streams. The person identification system implemented
in Athens Information Technology operates on short sequences of
the two modalities of the far-field data, producing unimodal iden-
tities and confidences. The identities produced by the unimodal
subsystems are then fused into a bimodal one by the audiovisual
subsystem.

This paper discusses our audio-based person identification
subsystem and is organized as follows: section 2 details the stan-
dard MFCC-GMM approach that forms the basis of our algorithm,
while section 3 presents two modifications to this basic scheme
that have enhanced its performance, in terms of both speed and
recognition accuracy. The CLEAR evaluation protocol and our
results are presented in section 4, followed by a discussion of sev-
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multi-sensor fusion strategies to further improve performance
ction 5. Finally, in section 6 the conclusions are drawn.

2. Speaker identification using GMMs
e training phase of our system the goal is to create a model
ach one of the supported speakers and ensure that these mod-
ccentuate the specific speech characteristics of each person.
his end, we first break up the training segments into frames
ppropriate size (i.e. duration), with successive frames having
edefined overlap percentage. The samples belonging to each
e are used to calculate a vector of parameters that represents
iven frame during the model estimation process. Specifically,
of Mel Frequency Cepstral Coefficients (MFCC) are extracted
each frame and they are used to model the characteristics and
ture of each individual’s vocal tract. All MFCC vectors for
en person are collected and used to train a Gaussian Mixture
el (GMM), based on the Baum-Welch algorithm [4]. A GMM
essence a linear combination of multi-variant Gaussians that
oximates the probability density function (PDF) of the MFCC
he given speaker

λk =
MX

m=1

wmN (O, μm, Σm) (1)

re λk is the GMM for the kth speaker and O is the set of
ing vectors used to estimate it. This model is characterized by
umber of Gaussians M that make up the mixture, each having

wn weight wm, mean vector μm and covariance matrix Σm.
For the identification part, testing samples are again seg-
ted into frames with the same characteristics as the ones cre-
during the training process, and we subsequently extract
C’s from each frame. To perform identification, each of the

M’s is fed with an array of the coefficients (one row per sam-
, based on which we calculate the log-likelihood that this set
bservations was produced by the given model. The model that
uces the highest log-likelihood is the most probable speaker
rding to the system

s = arg max
k

{L (O|λk)} (2)

re O is the matrix of observations (MFCC’s) for this testing
ent and L (O|λk) is the log-likelihood that each model λk

uces this set of observations.
All samples are broken up in frames of length 1024 with 75%
lap. The size of the GMM is fixed at 16 Gaussians and the
ber of static MFCC’s per frame has been set to 12. To this we
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concatenate the log-energy of the frame to create 13D vectors, and
we also append the delta (first-order derivative) coefficients.

3. Modifications to the basic algorithm
In this section we describe two significant modifications we have
applied to the standard MFCC-GMM framework and detail their
effect on the system’s performance.

3.1. PCA pre-processing of feature vectors

Automatic identification systems are evaluated based on their re-
sponse time and error rate. It is obviously important to minimize
both these numbers, however in many cases it is not easy or even
possible to do that and we must settle for a trade-off between speed
and identification accuracy. We have addressed this issue by em-
ploying the standard Principal Components Analysis (PCA) [5]
as a pre-processing step. Specifically, we compute a transforma-
tion (projection matrix) for each speaker based on their training
data and use that matrix to perform a mapping to the PCA coor-
dinate system prior to GMM calculation. In the testing phase, we
compute the log-likelihood of each speaker by first projecting the
MFCC vectors to the respective PCA space. Such an approach has
been previously reported in [6].

The use of PCA introduces one further degree of freedom in
the system, namely the dimensionality of the projection space. It is
obvious that by keeping an increasingly smaller number of eigen-
values from the PCA scatter matrix we can reduce this dimension-
ality accordingly, therefore achieving a significant execution speed
increase. The choice of the number of discarded eigenvalues will
be ultimately dictated by the truncation error introduced due to the
reduction of the projection space dimension. Specifically, if the
initial space dimension is d and we discard the q smallest eigen-
values, the truncation error will be equal to

e = 1 −

Pd

i=d−q+1
λi

Pd

j=1
λj

(3)

where λi is the ith largest eigenvalue.
We have implemented an automatic decision process that de-

termines the number of retained eigenvalues in a way that ensures
that the average truncation error across all speakers is no more
than 0.2%. The maximum value of q that satisfies this condition
is chosen, so that we achieve the greatest speed increase possible
while retaining (mostly) optimal identification accuracies. Our ex-
periments indicate that this selection strategy gives a value for q

that is at most one above or below the number of eigenvalues that
minimizes the error rates. Even if our choice of q leads to slightly
sub-optimal solutions, the achieved error rates are still superior to
using the standard GMM algorithm approach without PCA pre-
processing. We have therefore achieved faster response times as
well as enhanced identification performance. Section 4 reports the
performance of our system on the CLEAR 2006 evaluation dataset
and contrasts it with that of the standard MFCC-GMM classifier.

The efficiency of this selection strategy is illustrated in Table
1 below, based on experiments that have been performed on the
CLEAR 2006 evaluation data set. For the 15 sec training case, we
can see that although the selected value of 18 eigenvectors is sub-
optimal, it is nonetheless very close to the optimal choice in terms
of error rate (which is to retain 16 eigenvectors). For the 30 sec
training case, our selection strategy clearly yields the best result.
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e 1: Choosing the optimal value of retained eigenvectors
d on the truncation error.

15 sec training

etained EV 26 22 20 18 16
nfo Retained 100 99.963 99.902 99.804 99.661
sec testing 26.43 27.41 27.57 26.92 27.08
sec testing 9.49 9.00 9.25 9.73 8.27
sec testing 8.65 9.34 7.96 7.96 7.61
sec testing 6.74 6.74 5.06 4.49 4.49

30 sec training

etained EV 26 22 20 18 16
nfo Retained 100 99.962 99.9 99.802 99.659
sec testing 17.94 18.27 16.64 15.17 17.29
sec testing 2.68 3.41 3.41 2.68 2.43
sec testing 2.08 2.08 3.11 1.73 2.42
sec testing 0.56 1.12 1.12 0.56 0.56

Deterministic initialization of the EM algorithm

ery crucial step for the creation of a successful GMM is the
alization of its parameters, which will be updated during the
tions of the EM training algorithm. The standard approach
use the K-Means clustering algorithm to obtain some initial
ates for the Gaussian parameters; this strategy however suf-

from the random characteristics of the outcome of K-Means,
h in turn lead to a different GMM each time the same data are
for training. Moreover, the identification performance varies

iderably across these different models. We have therefore uti-
a deterministic initialization strategy for the EM algorithm,

d on the statistics of the training data. Specifically, we com-
a number of percentiles across all dimensions of the training
set and thus partition the data range in each dimension into as
y subsets as the modes of the GMM. The K-Means algorithm
nsequently run using the central values of each subset as ini-

cluster means, and the resulting clustered data are fed into the
algorithm for parameter fine-tuning.
Our experiments have shown that this strategy gives on aver-
lower error rates than the random K-Means initialization, al-
gh there are a few runs using the standard approach that lead
etter identification performance. This is illustrated in Table
here the reported error rates have been obtained from experi-
ts on the CHIL Run 1 data [2].

e 2: Comparison of identification error rates using random
eans initialization and the proposed deterministic strategy.

Random initialization statistics (over 30 runs)

Mean (%) 28.36
Standard deviation (%) 0.75

Best run (%) 27.27
Worst run (%) 30.38

Our strategy (%) 27.75

. Results in the CLEAR 2006 evaluation
speaker identification system has been tested on the CLEAR
data that comprise of speech samples from 26 individuals.



The audio conditions are far-field, in the sense that speech is
recorded by wall-mounted microphone arrays. Two training con-
ditions have been defined, with training segments 15 seconds long
for the former and 30 seconds long for the latter. Four testing du-
rations are also defined: 1, 5, 10 and 20 seconds long. All these
segments contain mostly speech, so a speech activity detection al-
gorithm [7] has not been used. The results of our system in terms
of error rate are shown in the rightmost column of Table 3 per
training and testing duration. The middle column contrasts the
performance of our system with that of a standard GMM classifier
of the same complexity. It is clear that the PCA pre-processing
step reduces error rates significantly, especially when the training
and testing segments have shorter durations. Furthermore, the av-
erage identification time is reduced by 39.2% after the PCA pre-
processing step is applied.

Table 3: Performance of our system on the CLEAR 2006 evalua-
tion database.

15 sec training

Test duration GMM PCA-GMM
1 sec 36.22 26.92
5 sec 11.92 9.73
10 sec 11.08 7.96
20 sec 6.18 4.49

30 sec training

Test duration GMM PCA-GMM
1 sec 22.35 15.17
5 sec 5.11 2.68
10 sec 3.81 1.73
20 sec 0.56 0.56

5. Decision fusion from multiple microphones
In this section we investigate the possible gains from utilizing in-
formation from more than one far-field microphones to reach our
final decision as to the speaker’s identity. The audio sensor setup
of all rooms where seminars were recorded in the scope of the
CLEAR 2006 evaluations includes at least one NIST MarkIII lin-
ear microphone array comprising 64 microphones. The results dis-
cussed in the previous section are based on recordings from only
the first (leftmost) microphone of those arrays; we have proceeded
to repeat the same experiments with different sets of microphones
and detail our findings in this section.

5.1. Effect of choosing a different single microphone

We have studied the error rates of our system when both the train-
ing and the testing segments were obtained from a different micro-
phone of the array and provide a summary of the results in Table
4. The test microphones have the following mapping to the actual
sensors of the array : microphones 1 and 4 are the leftmost and
rightmost respectively, microphones 5 and 6 are the two center-
most and finally microphones 2 and 3 are located at 1/3 and 2/3 of
the array length, respectively.

It is obvious from this table that the error rates vary quite
significantly as we move along the length of the microphone ar-
ray. This variation is especially noticeable as both the training and
testing segments increase in duration, as indicated by the com-
puted standard deviation to mean ratios. This large fluctuation
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s from the fact that the speaker is not always facing the same
ophone throughout the duration of a segment. Furthermore,
ents of large duration are usually created as a concatenation

ubsegments of contiguous speech without ensuring that the
ker is always at the same position in the room. These results
be reflected in the error rates obtained from all fusion strate-
described in the following subsections.

e 4: Error rate (%) variation across different single micro-
nes.

15 sec training

Test duration (sec)
Microphone 1 5 10 20

1 26.92 9.73 7.96 4.49
2 25.61 8.76 7.61 3.93
3 26.59 10.95 10.38 6.18
4 24.63 8.27 7.61 5.62
5 26.59 7.06 6.23 3.93
6 26.26 8.52 7.96 6.74

Mean 26.10 8.88 7.96 5.15
Standard deviation 0.85 1.33 1.35 1.20

andard deviation / Mean 3.24 14.97 16.95 23.34

30 sec training

Test duration (sec)
Microphone 1 5 10 20

1 15.17 2.68 1.73 0.56
2 16.97 2.68 2.77 1.68
3 15.33 3.16 2.08 1.12
4 17.46 2.43 2.08 1.12
5 18.27 3.89 2.42 1.12
6 17.94 3.16 3.11 1.68

Mean 16.86 2.82 2.37 1.21
Standard deviation 1.32 0.32 0.51 0.42

andard deviation / Mean 7.84 11.52 21.46 34.74

Concatenation of feature vectors from multiple micro-
nes

simplest fusion strategy is to concatenate the feature vectors
ined from each member of the set of test microphones and
uate the performance of the system on the whole observation
ix. Table 5 lists the results of applying this procedure on se-
d sets of 2 and 4 microphones as well as on the full 6 micro-
e set, where members of each sensor pair lie in symmetric

tions with respect to the center of the array.

Multi-microphone voting on a per segment basis

is case we process the feature vectors of a segment from each
ophone separately and reach as many decisions as the size of

microphone set. The final decision of the system is the most
y speaker according to the majority of the sensors; in case
tie between two speakers, the one with the highest total log
ihood across all microphones that support him is declared the
er. Table 6 lists the error rates when following this approach

he same sensor sets as in the previous subsection.



Table 5: Fused error rate (%) after feature vector concatenation.

15 sec training

Test duration (sec)
Microphone Set 1 5 10 20

[23] 23.65 7.79 5.54 3.93
[2356] 25.29 6.57 5.19 2.81

[123456] 24.8 6.33 6.23 2.25

30 sec training

Test duration (sec)
Microphone set 1 5 10 20

[23] 15.17 2.43 2.08 0.56
[2356] 15.33 2.43 2.42 0

[123456] 16.64 2.68 2.08 0.56

Table 6: Fused error rate (%) after per segment voting.

15 sec training

Test duration (sec)
Microphone Set 1 5 10 20

[23] 24.47 7.3 6.23 3.37
[2356] 25.29 5.6 4.5 2.25

[123456] 24.31 6.33 5.54 1.69

30 sec training

Test duration (sec)
Microphone set 1 5 10 20

[23] 16.15 2.92 2.08 0
[2356] 15.01 2.19 2.42 0

[123456] 16.15 2.43 2.08 0.56

5.4. Multi-microphone voting on a per frame basis

In this case we compare each feature vector across all microphones
and select the microphone that gives the highest log likelihood for
each speaker in the given frame. This selection process results in
a feature vector set which we process similarly as in the case of a
single microphone; the difference is that per-frame log likelihoods
for different speakers are not necessarily derived based on the same
microphone. Table 7 lists the error rates when following this ap-
proach for the same sensor sets as in the previous subsection.

5.5. Comments on the employed fusion strategies

Clearly, the use of multiple microphones greatly reduces the error
rates of a speaker identification system. For the case of 15 sec-
ond long training segments, all three fusion strategies show very
promising results, especially the per segment voting scheme. This
is not the case for the 30 second training segments, where an im-
provement is achieved in only a few cases (with respect to the re-
sults reported in the CLEAR 2006 evaluations), while there are
also instances of performance degradation. This is due to the fact
that longer segments are more likely to contain speech coming
from different locations inside a room. Hence the probability of
some microphones being ”bad” choices is minimal; all the micro-
phones are suitable and their combination does not attenuate the
effect of some bad choice anymore.
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Table 7: Fused error rate (%) after per frame voting.

15 sec training

Test duration (sec)
Microphone Set 1 5 10 20

[23] 24.47 7.06 4.84 3.93
[2356] 25.45 6.57 4.15 2.81

[123456] 25.29 6.57 5.88 2.81

30 sec training

Test duration (sec)
Microphone set 1 5 10 20

[23] 15.33 3.41 2.42 0
[2356] 16.48 2.92 2.77 0.56

[123456] 18.92 3.16 2.42 0

6. Conclusions
have presented a complete and automatic GMM-based
ker identification system, enhanced with per-speaker PCA
processing of feature vectors and a deterministic EM algo-

initialization strategy to reduce error rates and boost execu-
speeds. After reporting the performance of our system in the
nt CLEAR 2006 evaluations using only a single microphone,
ave proceeded to describe three simple fusion strategies em-
ing multiple far-field microphones and demonstrate their po-
al to further increase successful identification rates.
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