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ABSTRACT

We studied the effect of MLLR adaptation with Spanish-

accented English to understand the strengths and weaknesses

of MLLR with unseen foreign accents. We trained a global

MLLR transform on 10 adaptation sentences per speaker,

giving a 3.4% absolute decrease in phone error rate. We then

studied the pattern of improvements across phones and phone

classes. Phones that improved the least tended to be those that

do not exist in Spanish. Results suggest the poorer performance

is related to increased insertion and substituter rates during the

adaptation phase, as well as greater acoustic variability.

Index Terms: speech recognition, adaptation, MLLR, foreign

accent, Spanish, error analysis

1. INTRODUCTION

Non-native speech is well-known for reducing speech

recognition performance. It can result in word error rates of

two to three times native error rates [1, 2]. Accent-specific

acoustic models can improve performance, but are often

infeasible in practice due to data collection limitations and an

intractable/unknown number of potential accents.

An alternative approach is to adapt native acoustic models

to non-native speech on-line during recognition. Maximum

likelihood linear regression (MLLR) [3] is an adaptation

technique that uses small amounts of data to train a linear

transform which warps the Gaussian means so as to maximize

the likelihood of the data. MLLR has produced substantial

gains in non-native recognition accuracy for a variety of

accents, including Spanish (7% absolute) [1], Cantonese (10%)

[4], Japanese (over 20%) [5], and German (5%) [6]. Despite

these gains, however, typical non-native accuracy following

adaptation still falls substantially below that of native speech

[1, 2, 4, 5, 6]. An important step in improving an adaptation

technique is understanding its limitations. What aspects of

accented speech are adaptation methods not capturing?

To begin to address this question, we performed a phone-

based error analysis on the recognition results for Spanish-

accented speech before and after MLLR speaker adaptation.

Our goal was to determine which phones or phone classes

improved the most or least with MLLR. We chose to use

MLLR with a global transform because of its effectiveness

with adaptation set sizes on the order of 10s of utterances. This

time frame is ideal for the goal of rapid adaptation to a speaker

with an unknown accent.
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2. SPANISH-ACCENTED CORPUS

used a subset of the conversational Spanish-accented

lish corpus collected at Johns Hopkins University [1] that

uded 16 speakers (8 males, 8 females) from several

nish-speaking countries. The speakers represented a wide

ety of English proficiencies. In the corpus, pairs of

kers performed collaborative tasks over the telephone, and

speech was recorded simultaneously in telephone- and

e-band formats. The present study used the wide-band

ch. Speech was segmented into turns and transcribed, with

ean of a little over one hour per speaker.

3. ERROR ANALYSIS

his study, we performed phone-recognition tests on the

nish-accented corpus, first with native English acoustic

els, and then after adapting the models with 10 utterances

speaker. We then conducted a linguistically-based analysis

he improvement in phone recognition error rate of various

ne classes. We used phone recognition, rather than word

gnition, in order to more directly assess the acoustic model

and avoid the masking effects of lexical and language

el constraints. We also conducted word recognition on the

re Spanish-accented data set in order to obtain a word error

(WER) benchmark for comparison with other studies.

Recognition system

conduct the recognition experiments, we used the SONIC

e vocabulary recognizer [7]. We used only the first pass of

decoder, which consists of a time-synchronous beam-

ed Viterbi token-passing search. Crossword acoustic

els and a 3-gram language model were applied in this pass.

Acoustic models: We used gender-dependent acoustic

els (AMs) from the SONIC release, pre-trained with 30

rs of data (283 speakers) from the WSJ0 and WSJ1 corpora

SJ text read by native speakers of American English. The

els were context-dependent state-tied triphones.

Lexicons: For word recognition, we used the 39,000-word

sissippi State ISIP Switchboard lexicon as augmented for

Spanish-accented data set by [8] and [9]. For phone

gnition, we created a phone lexicon in which each phone

a “word” with itself as the pronunciation.

Language models: For both word and phone recognition,

used cheating language models (LMs) based on the entire

set. This allowed for a reasonable level of performance
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despite the task and accent mismatch between the data and

acoustic models.

To create the phone LM, we replaced each word in the

transcriptions with its pronunciation from the lexicon described

above, and used the CMU-Cambridge Toolkit [10] to build 3-

gram Katz back-off LMs with Witten-Bell discounting. The

word LM had a vocabulary of 4133 words, and the phone LM

had 55 “words”: 50 phones (from a modified SPHINX version

of the ARPAbet) plus symbols for silence and non-speech.

Word-recognition evaluation: The entire data set was used

for the word-recognition test, a total of 5,530 (test) utterances

and 144,539 (test) words. The recognizer used the native

English AMs and the full word lexicon and LM described

above. The mean WER for males was 64.4% (61.0% to

67.1%). The mean WER for females was 61.4% (43.7% to

83.1%). WER correlated strongly with English proficiency

scores (r = -0.78, p < .001; scores are on a scale from 2 to 8,

with higher scores signifying higher proficiency [1, 11]). These

error rates are comparable to those of other accented speech

studies [1, 4, 5, 6, 8].

3.2 Phone recognition and adaptation methodology

For our main experiment, we decoded the Spanish-accented

speech using the phone-recognizer with the native English

AMs and holding out 10 utterances per speaker for adaptation.

This produced the baseline phone error rates (PERs). We then

evaluated the data again following MLLR speaker adaptation.

To select the adaptation utterances, we selected all

utterances with durations between 8 and 13 seconds. From

these we then selected by hand the first 10 for each speaker

that contained at least 50% speech. We chose to use 10 based

on pilot tests showing little additional improvement with more

than 10 utterances using a global transform.

MLLR adaptation was implemented in an unsupervised

fashion with a global transform. Although evaluation of the full

test set used phone recognition for the purpose of phone-based

error analysis, recognition of the adaptation utterances during
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LR used word recognition because this is what is typically

. For each speaker, 10 adaptation utterances were first

oded with native English AMs, and the alignment output

used to adapt the AMs. Each subsequent iteration used the

ly adapted models to re-recognize the adaptation data.

er three iterations, phone recognition was performed on the

aker’s test data (minus the adaptation data) using the

pted AMs.

The mean baseline PERs were 66.9% for male speakers

59.4% for females. Post-adaptation PERs were 63.4% for

es and 56.1% for females.

Error analysis results

first evaluated the recognition performance for each phone.

ne-level reference transcriptions were created by replacing

word in the word transcriptions with its pronunciation in

lexicon. Sclite v2.3 was used to align the reference and

othesis, and rates of correct identification, substitution,

tion, and insertion were calculated for each phone.

Figure 1 shows the absolute improvement in PER for each

ne from baseline to post-adaptation, grouped by manner

s. Two characteristics stand out. First, phones vary widely

he amount of improvement, with some benefiting by over

and others getting worse. In addition, /r/-variants benefited

tly from adaptation: ER, AXR, and R gained by 13.26%,

%, and 6.00%, respectively.

Improvement in PER (post-MLLR – baseline) did not

elate significantly with the proportion of each phone in the

ptation materials (r = 0.18, ns), with the baseline PER (r

9, ns), or with PER in the adaptation utterances (r = 0.10,

These results were unexpected; more instances of a phone

e adaptation materials should result in better representation

hat phone’s acoustic characteristics in the global transform.

the correlation was actually in the opposite direction. A

ilar argument could be made for baseline PER.
Figure 1: Improvement in phone error rate following MLLR speaker-adaptation with 10 utterances. Means represent 16

Spanish-accented speakers. (Note: stop-D, e.g., PD, represents syllable-final unreleased stop consonants.)
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We grouped phones into linguistic classes to investigate

how MLLR adaptation captures traditional linguistic features.

Table 1 shows the baseline PER and percent improvement

following adaptation for each phone class examined. To

determine whether differences were statistically reliable, we

entered percent improvement for each phone contrast into a

separate analysis of variance (ANOVA) with phone class and

gender as factors, and speaker as a random effect. Consonants

improved more than vowels, F(1, 14) = 18.54, p < .005, and

tense vowels improved more than lax vowels, F(1, 14) = 23.26,

p < .001. There was a main effect of class for the Manner

contrasts, F(2.5, 34.7) = 3.18, p < .05 (Huynh-Feldt corrected

for nonsphericity), and for the Place contrasts, F(7, 98) =

14.89, p < .001. There was no effect of Voicing, and no main

effects or interactions involving gender for any analysis.

Table 1: Baseline phone error rate and percent change

after adaptation (post-MLLR PER – baseline PER)

Contrast

Baseline

PER

Change

(% absolute)

Consonants vs. Vowels
†

consonant 62.64 -3.52

vowel 62.22 -2.21

Manner*

approximant 64.82 -4.41

fricative/affricate 60.35 -1.84

nasal 51.86 -4.14

stop 70.30 -4.17

vowel 62.22 -2.21

Voicing (Cs only)

voiced 63.00 -3.42

voiceless 61.99 -3.69

Place of articulation (Cs only)
†

labial 53.92 -6.33

labiodental 59.08 0.34

dental 65.43 -0.86

alveolar 63.52 -3.42

postalveolar 72.36 -6.42

palatal 54.57 -3.49

velar 61.65 -4.05

glottal 70.32 3.53

Tenseness (Vs only)
†

tense 55.74 -4.04

lax 67.47 -0.72
†
p < .005, * p < .05, Note: All means are weighted by phone count.

An interesting trend begins to emerge in this analysis:

Phonemes that do not exist in the Spanish language seem to

improve the least with adaptation. For example, lax vowels,

which are not present in Spanish, improve by only 0.72%

absolute compared to 4.04% for tense vowels, many of which

are in the Spanish inventory. Notice also that, of the six phones

that got worse after adaptation in Fig. 1, five are not in

Spanish: V, HH, GD, IH, AX. (We classified a phone as “in

Spanish” if it maps fairly directly onto a phoneme in Spanish,

not including allophonic variants such as DH.) Based on this

observation, we split the phones into two categories, Spanish

and non-Spanish, and entered the absolute percent change from

baseline to post-MLLR into an ANOVA. As shown in Table 2,

Spanish phones improved significantly more than non-Spanish

phones, F(1, 14) = 35.43, p < .001.
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Table 2: Baseline phone error rates and change after

adaptation grouped by whether phone exists in Spanish

Baseline

PER

Change

(% absolute)

nish

AA AXR B CH D EY F G IY

K L M N OW P R S T UW W
57.86 -4.74

In

nish

AE AH AO AW AX AY BD

DD DH DX EH ER GD HH

IH IX JH KD NG OY PD SH

TD TH TS UH V Y Z ZH

66.91 -1.31

: All means are weighted by phone count.

We explored four possible explanations of the poorer

ptation results for non-Spanish phones. They related to:

line phone error rates; error patterns produced during the

oding of adaptation utterances; variability in the realization

on-Spanish phones, and the size of the adaptation set.

Baseline phone error rate: As is clear from Table 2, non-

nish phones had a higher baseline PER than Spanish

nes. A possible explanation for the difference in

rovement after adaptation is that phones with higher PERs

efit more from MLLR. However, as reported above, there

no correlation between baseline PER and percent

rovement by phones.

Errors in decoding adaptation utterances: It is important to

mine the errors generated in the first recognition pass of the

ptation utterances because the resulting hypotheses

rmine the MLLR transform. We expected a higher

stitution rate for non-Spanish phones than for Spanish

nes because non-native speakers often replace unfamiliar

nemes with similar sounds from their native inventory. The

stitution rate was higher for non-Spanish (29.43%) than for

nish (26.65%) phones; however, the correlation between

stitution rate and PER change after adaptation was actually

he opposite direction (r = -0.27, p = .06). Therefore, the

ering improvement rates are not due to more substitutions

on-Spanish phones during adaptation.

Two other error types significantly correlated with change

ER: insertion rate (r = 0.48, p < .001) and substituter rate

0.33, p < .05; that is, the mean percentage of time a

icular phone was substituted for all target phones).

cifically, phones with higher insertion or substituter rates

efited less from adaptation. This makes sense because

rted and substituted phones are aligned with the wrong

ustic features. If non-Spanish phones have higher insertion

substituter rates, this could explain the differing

rovement with adaptation; and, indeed, they do (insertion:

-Spanish 8.41%, Spanish 6.24%; substituter: non-Spanish

%, Spanish 2.49%). Why are non-Spanish phones

propriately recognized more often? One possibility is that,

ause the word lexicon and LM were used during

upervised adaptation, non-Spanish phones were expected as

n as in English, but did not appear as often in the data

ause of non-native pronunciations). The decoder

ognizes” them, due to lexical and LM constraints, but in

wrong places. We are planning follow-up experiments to

the assumption that non-Spanish phones in the adaptation

actually are a poorer match with the acoustic models.

Variability in vowel production: Finally, we tested whether

-Spanish vowels were produced with greater variability in

test utterances. If the acoustics of these phones were highly



inconsistent, then the MLLR transform would be of little

benefit. To test this hypothesis, we hand-measured the first and

second formants (F1 and F2) of the Spanish vowels (AA EY

IY OW UW) and of the worst-performing non-Spanish vowels

(AH AX EH IH UH). Selecting tokens from the data set

involved three steps. First, we aligned the full data set with the

word transcriptions using SONIC. Second, for each speaker we

automatically selected three tokens of each vowel, one from

the first, second, and third portions of the speaker’s data set. As

a compromise between controlling phonetic environment and

finding enough tokens, we only measured vowels in alveolar-

vowel-alveolar environments (including T D TD DD DX N L

S Z). Third, using Praat [12], we realigned the vowel labels by

hand to begin/end halfway through the onset/offset transitions,

and calculated the mean F1 and F2 for each vowel.

Several samples were discarded due to elision or

transcription error, leaving 41 to 48 samples of each vowel.

UH was not analyzed because only six tokens were found in

the correct context. F1 and F2 standard deviations were

calculated separately across males and females and used as the

variability measure. Table 3 shows the results. There is no

clear difference in mean variability between Spanish and non-

Spanish phones. However, there was a significant correlation

between F2 standard deviation and PER change for males (r =

0.71, p < .05). This finding is suggestive that phones produced

with greater variation do not benefit as much with MLLR, but

further research is needed.

Size of adaptation set: In case the Spanish/non-Spanish

effect was an artifact of the small adaptation set, we re-ran the

experiment using half of each speaker’s data as the adaptation

set (between 131 and 312 utterances), leaving the remaining

half for testing, and used 55 regression classes (one per phone)

to improve performance. Absolute improvement was 15.24%

for Spanish phones, and 9.53% for non-Spanish. Even with a

large amount of adaptation data, the effect of phone inventory

remains.

Table 3: F1 and F2 standard deviations for male (M)

and female (F) speakers and means (M) across vowels

Spanish Non-Spanish

AA EY IY OW UW M AH AX EH IH M

F1 93 69 62 75 49 70 65 87 44 52 62
M

F2 155 190 198 207 316 213 214 325 196 168 226

F1 114 97 60 102 62 87 118 126 109 68 105
F

F2 227 244 402 293 361 306 156 269 258 275 240

4. CONCLUSIONS

We studied the patterns of improvement in phone recognition

after MLLR adaptation for Spanish-accented English. Phones

varied widely in amount of improvement, from a 13% decrease

in PER to an almost 4% increase. Phones with degraded

performance tended to be English phones that do not exist in

Spanish (e.g., lax vowels, HH, V). Our results suggest this

effect is not due to baseline PER, frequency in the adaptation

materials, or substitution rate during adaptation. Instead, it is

associated with increased insertion and substituter rates during

the adaptation phase. We also found an effect of phonetic

variability; more variable phones were less well modeled by
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LR (for male speakers only). Finally, English rhotic phones

AXR, ER) showed particular improvement from

ptation.

A remaining question is how supervised adaptation would

ct the results. We ran a supervised version of the

eriment with the male speakers and, surprisingly, found an

ease in PER from baseline. This may be due to a large

ber of poorly transcribed word fragments and filled pauses

he adaptation utterances (we counted a mean of 4.4 out of

er speaker). Further research is needed to explore this issue

ese are common in non-native speech.

The Spanish/non-Spanish effect much be checked with a

ve English data set to ensure it is not an inherent

racteristic of these phone groups. This study is currently

erway. If, however, the effect is due to production patterns

on-native phones, as we suspect, it may point to a source of

LR’s limitations in handling foreign accent. These findings

suggest that cross-language differences in phone inventory

uld be an important area of focus for improvements in

ign accent adaptation.
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