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Abstract 
We propose a vector space approach to characterizing 
environments for robust speech recognition. We represent a 
given environment by a super-vector formed by concatenating 
all the mean vectors of the Gaussian mixture components of the 
state observation densities of all hidden Markov models trained 
in the particular environment. New environment super-vectors 
can now be obtained either by an interpolation method with a 
collection of super-vectors trained from many real or simulated 
environments or by a transformation performed on an anchor 
super-vector for a specific environment, such as a clean 
condition. At a 5dB signal-to-noise (SNR) level, both 
interpolation- and transformation-based approaches achieve a 
significant error rate reduction of close to 47% from a baseline 
system with cepstral mean subtraction (CMS) with only two 
adaptation utterances. When incorporating N-best information to 
perform unsupervised adaptation at 5dB SNR with the same two 
utterances, we achieve a relative error reduction of about 40%, 
close to that achieved in the supervised mode. 
Index Terms: acoustic modeling, environment adaptation 

1. Introduction 
Automatic speech recognition (ASR) systems had been largely 
improved since statistical hidden Markov model (HMM) was 
established as a fundamental tool to represent speech signals. 
However, HMMs do not generalize well from the training to 
testing mismatch conditions. Many robustness techniques have 
been developed to reduce such mismatch conditions. Among 
them, the CDCN algorithm [1] performs feature compensation 
with a correction vector, which is estimated with a VQ 
codeword, indicating the gap between the training and testing 
environments. Stochastic matching [2] is also an effective way 
to estimate the mismatch factor in a maximum likelihood, self-
adaptation manner. 

It is clear that if an unknown environment can be accurately 
characterized the performance of speech recognition systems in 
adverse conditions can usually be effectively improved. In this 
study we propose a vector space approach to environment 
modeling that we model each environment of interest by a 
super-vector consisting of the entire set of mean vectors from all 
Gaussian components of a set of HMMs intended to be used for 
the particular environment. If we have available a large 
collection of such vectors covering the environment space, we 
can determine the vector for an unknown condition, and use 
them to construct HMMs for the testing environment.

To estimate the super-vector for an unknown environment we 
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pose two methods. The first technique interpolates the 
nown vector with a large collection of environment vectors 
ained from the sets of HMMs trained with speech data 
lected in their corresponding environments. We call this 
hod interpolation-based environment modeling (IEM).  The 
ond technique is based on estimating the super-vector by 
forming a transformation over an anchor super-vector. This 
sformation matrix is often interpreted as a correlation 

ween a noisy super-vector and the anchor super-vector, and 
 be obtained by another large collection of transformation 
rices, each corresponding to the transformation required for 
particular known environment. We call this method 
sformation-based environment modeling (TEM).  
wo key issues are worth mentioning. The first is about the 
ilability of a large collection of super-vectors to provide a 
d coverage of the environment space. The second is the 
unt of data needed to estimate the interpolation weights in 
, and the transformation matrix in TEM. The latter can be 

ressed by principle component analysis (PCA) [3]. We will 
uss the specific techniques involved here in Sections 2 and 3 

en we present the IEM and TEM approaches. 
or obtaining a large set of super-vectors, we can collect 
ech data from a large population of talkers if we intend to 
racterize the speaker space. For modeling the environment 
h the combination of adverse conditions and noise levels is 
 prohibitive that we decide to employ Monte Carlo (MC) [4] 
nique to simulate a wide range of conditions. The MC 
hod enables us to quantitatively and qualitatively analyze the 
perties and the coverage of the environment space. 
he TIMIT corpus [5] is used as a domain-independent, non-

it training database to obtain phone HMMs in clean 
ditions. We test the proposed approach on the Aurora 2 
nected digit recognition task [6] in diverse conditions. And 
 noise sources needed to perform Monte Carlo simulation are 
racted from the wide selection of noise types in the NOISEX-
database [7]. The proposed IEM and TEM approaches 
ieve a close to 50% error reduction over a conventional 
stral mean subtraction method when a few utterances are 
d for adapting HMMs to the testing environment. Moreover, 
n unsupervised adaptation mode significant improvements in 
formance over the baseline system have also been observed. 

Interpolation-based environment modeling 
re are two steps in the IEM approach. In the offline step, the 

ire set of mean vectors of a HMM model set for one 
ironment p is concatenated into a super-vector Xp, where 
, 2…P for P different environments. The dimension for each 
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super-vector is G×DV, where G is the number of Gaussian 
mixtures for one environment and DV is the dimension for each 
mean vector. The ensemble of these super-vectors forms an 
environment space with dimension P. In this paper, this set is 
referred to as an I-environment space, or simply I-space. 

In the online step, with a small amount of speech segments, a 
super-vector Xtest, for the unknown testing environment, is 
estimated from the available set of P environment vectors. Three 
methods can be used to estimate the super-vector. 

2.1.  Best first 

A best first method can be used to determine Xtest by locating 
the most matched super-vector in the I-space as: 

)( ptest
p

test |Lmaxarg XO=X   ,       p=1, 2…P,                (1)              

where L is the likelihood function and Otest is the set of feature 
vectors corresponding to the adaptation speech data. 

2.2.  Full space linear combination 

An interpolation method is developed to improve the 
performance. It generates the super-vector Xtest by a linear 
combination of super-vectors in the I-space with a set of weight 
coefficients ŵp, p=1, 2…P, i.e.: 

1

P

p
pptest ŵ

=

X=X  .                     (2) 

The estimation of the weight coefficients is performed in the 
online step according to some optimization criteria. Here we use 
a maximum likelihood (ML) algorithm: 

1

ˆ arg max  ( | )
p

P

p test p p
w

p

w L w
=

= ∑O X .                                           (3) 

2.3.  Reduced PCA space linear combination 

When the amount of adaptation data is very limited, dimension 
reduction techniques will be needed to properly reduce the 
number of weight coefficients to be estimated. We used a PCA 
method on the I-space, while keeping the KI eigenvectors with 
the highest singular values, a principle component I-space with 
a reduced dimension KI is thus constructed. In the online step, a 
super-vector for the unknown environment is estimated as: 

I

1

K

k
kktest v̂

=
Xe=X ,                                                                 (4) 

where 
kXe is the k-th principle eigenvector in the I-space, and 

kv̂ , k=1, 2…KI, are the corresponding weight coefficients 

calculated based on the following ML algorithm:

)( 
I

1

K

k
kktest

v
k v|Lmaxargv̂

k =
XeO= .                    (5) 

3. Transformation-based environment 
modeling 

For the TEM approach, an environment is described by a 
transformation characterizing its correlation with the training 
environment. The super-vector Xtest for the testing environment 
is computed as: 

traintesttest XW=X                                                                (6) 
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ere Xtrain is an anchor (reference) super-vector for the training 
ironment, and Wtest is the transformation for the testing 
ironment. The implementation can also be divided into the 
ine and offline steps. In the offline phase, P sets of 
sformations, W1, W2… WP, corresponding to P different 
ironments are calculated as follows: 

)( trainpp |Lmaxarg WXO=
W

, p=1, 2…P,                (7) 

ere Op is all the training data from the p-th environment. 
ameters in one transformation are then vectorized into a 
er-vector, and with these P super-vectors, a transformation-
ed environment (T-environment) space, or T-space, with 
ension P, is constructed. On the other hand in the online 
se, the transformation Wtest is estimated with some 
ptation speech data from the unknown testing environment. 

.  Best first 

 best first method is still the most intuitive solution: 
)( trainptest

p
est |Lmaxarg XWO=  p=1, 2…P.                  (8)   

.  Full space linear combination 

t we consider the linear combination method: 

p

P

p
pst w~ W=

=1

,                                                                      (9) 

ere the coefficients pw~ are estimated from the ML criterion: 

))(( 
1

P

p
trainpptest

w
w|Lmaxarg

p =

XWO= .                               (10) 

.  Reduced PCA space linear combination 

A can also be utilized to construct a principle component T-
ironment space with a reduced dimension KT. Then the 
er-vector for the testing environment can be estimated as:  

k

K

k
kest v~ W

1=

e=
T

,                                                               (11) 

ere kWe is the k-th eigen-vector of the super-vector space 

ed by the all the transformation matrices in the T-space, 
 coefficients kv̂ are computed based on the ML criterion:  

))((
T

traink

K

k
ktest

v
v|Lmaxarg

k

XeO= W
1=

 .                         (12) 

er Wtest is computed, the super-vector Xtest for the testing 
ironment can be obtained with the formulation in Eq. (6). 

4. Experimental setup and result analysis 
o different corpora, TIMIT [5] and Aurora 2 [6], were used 
training and testing sets in all the experiments. Fifteen 
erent types of noise sources were selected from the 
ISEX-92 database [7]. Monte Carlo method [4] can now be 
loyed to simulate the noise data at different SNR levels with 

ious noise types and then be added to the TIMIT data to 
ain new artificial training data as a particular point in the 
ironment space. When there are S different noise sources 
h L different SNR levels, P (P=S×L) noisy environments can 
constructed to simulate the environment space. Moreover, 



with different combinations of noise sources and SNR levels, 
we may qualitatively and quantitatively analyze the 
characteristics of the environment space. 

For compatibility in sampling rates, all the speech and noise 
data were down-sampled to 8 KHz before performing feature 
extraction. We used a commonly adopted feature vector of 39 
elements, consisted of 13 MFCC parameters plus their first and 
second order time derivatives. An utterance-level cepstral mean 
subtraction (CMS) was performed for normalization. 
    For each environment the entire training set with 3696 
utterances in the TIMIT or simulated TIMIT database was used 
to train 45 English phone HMMs. All models have 3 states with 
each state characterized by 16 Gaussian mixture components. 
The set A in Aurora 2 database was used as the testing set. The 
utterances in set A are based on speech data from TIDIDIGITS 
corpus [8] that pass through a linear filter and/or contaminated 
by four types of noise (subway, babble, car and exhibition) with 
different SNR levels. Conventional digit-specific trained HMMs 
produced about 6% and 28% digit error rates averaging over 4 
SNR levels at 5dB to 20 dB, in multi-condition and clean 
training respectively [9]. We expected much lower recognition 
rates in our experiments since there is no digit knowledge 
involved in estimating HMMs, nor in building the environment 
spaces. Here the digit error rate achieved by the TIMIT trained 
HMMs with per-utterance CMS is 5.27% for the clean condition 
in set A. From our preliminary experiments we observed that 
increasing the number of noise types often does not improve 
recognition performance accordingly, and some representative 
noises can be used to effectively build the environment space. 
On the other hand, the coverage of SNR levels is more related to 
the performance in environment modeling. Instead of using all 
environments, we select 48 (with white, pink and car noises at 
16 SNR levels between 0dB to 40dB) representative conditions 
to build the environment space in the following experiments.  

4.1.  Comparison of IEM methods 

In Figure 1 we plot the digit error rates, for the IEM approach 
with 2, 4, 6, 8 and 10 adaptation utterances, averaging over 4 
SNR levels at 5, 10, 15, 20 dB and 4 different noise types of set 
A from the Aurora 2 database. Digit error rate achieved with 
per-utterance CMS was 38.81%, and it served as the baseline. 
Curves (a) and (b) are best first and linear combination methods 
without any dimensionality reduction, i.e., P=48. While curves 
(c) and (d) are PCA methods for reduced-dimension I-space, 
with KI=5, and 10, respectively.  Clearly IEM outperformed 
CMS. For KI=10 with 2 adaptation utterances we observed an 
error rate reduction of about 43% from 38.81% to 21.5%. 

   
Figure 1: Comparison of IEM approaches with different online 
processes. Curves (a), (b), (c) and (d) are for the best first, 
linear combination and PCA with KI=5 and KI=10.  
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It is noted that the best first method can not achieve as good 
formance as the others. For the results obtained with PCA 
formance will degrade if the dimension is over-reduced, e.g. 
5, while performance did not change much for KI>10. When 
 amount of adaptation data was limited, the full space linear 
bination method with all 48 environments gave a slightly 

rse error rate than the ones when KI>10. All the performance 
els became similar when more data were available. 
thermore the difference in performance between KI=10 and 
25 was very small, and therefore we only reported the results 
h KI=10 in Figure 1. It is also noted that with 10 adaptation 
rances the linear combination method in (b) gave the best 
r rate reduction when all 48 environments were used. 

.  Comparison of TEM methods 

ilar to the above analysis in Figure 1 we plot curves (e) (f) 
and (h) for the best first, linear combination in T-space with 
8, and PCA T-space with KT=5 and 10, in Figure 2. Again 
observe the same trend that the best first method can not 

e good performance. The linear combination method gave a 
htly worse performance than the case with KT=10 when the 
unt of adaptation data was limited to 2 utterances. 

t is observed that because some noise types in the testing 
ditions are not used in simulating the environment space, the 
t first method can not identify the correct noise type, but has 
 potential to locate the noisy environment at the correct SNR 
el. Best first method still gave a slight error rate reduction 
h an average digit error rate of 29.76% with 10 adaptation 
rances, as compared to the baseline error rate of 38.81%.  

.  Comparison with supervised MLLR adaptation 

le 1 shows experiments conducted with conventional MLLR 
] to do environment adaptation, using 6 sets of MLLR 
rices corresponding to 6 different manners of articulation, 
ely vowel, fricative, stop, nasal, approximant and silence. 
 transformation matrices were estimated directly with the 
ptation utterances, and used to adapt HMM parameters for 
 testing environment. Taking the results obtained with the 

 and TEM approaches, with KI and KT set to 10, we listed in 
le 1 the digit error rates across 4 SNR levels, from 5dB to 
B, for supervised MLLR, curve (d) for IEM in Figure 1, and 
ve (h) for TEM in Figure 2, all with 2 adaptation utterances. 
 CMS results were also listed for comparison. 
t can be noted that both IEM and TEM approaches achieved 
ter performance than the baseline and MLLR, and clearer 

  
ure 2: Comparison of TEM approaches with different online 
cesses. Curves (e), (f), (g) and (h) are for the best first, 
ar combination and PCA with KT=5 and KT=10. 
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improvements were observed in lower SNR conditions. For 
example, when SNR=5dB, the error rate reductions from CMS 
to IEM and TEM were 46.27% and 46.76%, respectively. And 
the error rate reductions from MLLR to IEM and TEM were in 
the range of 10-11%. It is also noted that to characterize the 
testing environment the TEM method here uses 6 sets of 
matrices, and each matrix has the same dimension as those used 
in MLLR. Nonetheless TEM only estimated 6 sets of 
coefficients to determine the transformation matrices. The 
number of free parameters for MLLR was 6×(39+39)=468, and 
only 6×10=60 when KT=10 for TEM. The realization of this 
data reduction is made by the a priori environment information 
when building the T-environment space.

Table1: Digit error rates (in %) across different SNR levels.
SNR (dB) CMS MLLR IEM TEM 

5 77.63  46.38 41.71  41.33  
10 46.73 33.39 22.70  21.89  
15 20.13  17.76 14.04 15.17  
20 10.76  13.97 9.83  10.46  

4.4. Unsupervised adaptation   

In the previous sections, the super-vector for an unknown 
testing environment for either IEM or TEM is estimated in a 
supervised mode. Since N-best information has already been 
shown beneficial to accomplish unsupervised adaptation of 
speakers [11], we try to incorporate this N-best information to 
realize unsupervised adaptation with the TEM approach which 
produces nearly the best performance among all supervised 
adaptation experiments. Here the adaptation utterances are still 
provided but the corresponding labels are multiple N-best 
strings. When these N strings are integrated, the N-best TEM 
formulation with PCA can be modified to the following: 

1 1

))((
TN

n
cleank

K

k
kntest

v
Nbest,k v|q,Lmaxargv~

k =
W

=

XeO= ,   (13) 

where Nbest,kv~ is the weighting coefficient for the k-th eigen-

vector and qn is the decoded label string for the n-th best list. 
It is noted that when compared with TEM in a supervised 

mode with 2 adaptation utterances, the unsupervised solution 
achieved similar performance among different SNR levels. At 
5dB SNR, the unsupervised adaptation TEM has a higher digit 
error rate of 47.16%, as compared to 41.33% for supervised 
TEM. It is interesting to note when SNR=15dB, unsupervised 
TEM gave a 14.20% digit error rate, which is slightly better 
than 15.17% achieved in supervised TEM.  

We also compared TEM and MLLR in an unsupervised 
MLLR mode. With N-best list from 2 decoding utterances, the 
unsupervised TEM produced a better error rate than MLLR with 
a relative digit error reduction of 16% (from 56.56% to 47.16%) 
and 46% (from 26.28% to 14.20%) in 5dB and 15dB SNR 
conditions, respectively. When there were 10 decoding 
utterances, unsupervised TEM and MLLR by incorporating N-
best lists had similar error rates in all the different conditions.

It should be noted that although both unsupervised TEM and 
MLLR achieved similar performance, the performance of 
unsupervised MLLR was seriously degraded with not enough N-
best decoding utterances. TEM, on the other hand, efficiently 
utilizes N-best information in performing rapid adaptation. It 
can be concluded that either in a supervised or unsupervised 
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de, the TEM algorithm is very effective and can be used in 
y adverse conditions to improve performance. 

5. Summary  
 propose a new vector space approach to environment 
deling. It showed good properties in characterizing the 
ironment spaces of interest. IEM and TEM approaches have 
n adopted to estimate unknown testing environments in both 
ervised and unsupervised modes. They have reduced 
ognition errors significantly in adverse conditions. 
rovements are more pronounced in lower SNR conditions. 

5dB SNR, TEM in both supervised and unsupervised modes 
ieves error rate reduction of more than 40% from the CMS 
elines. When compared to a conventional MLLR, 10-11% 
r rate reductions are achieved with 2 adaptation utterances. 
 proposed unsupervised IEM and TEM approaches can be 
pted because they achieve comparable improvement with 
se obtained supervised scenarios.  
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