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Abstract
Recently there has been interest in uncertainty decoding for ro-
bust speech recognition. Here the uncertainty associated with the
observation in noise is propagated to the recogniser. By using ap-
propriate approximations for this uncertainty, it is possible to ob-
tain efficient implementations during decoding. The aim of these
schemes is to obtain performance which is close to that of a model-
based compensated system, without the computational cost. Un-
fortunately, in low SNR there is a fundamental issue with front-end
uncertainty decoding where the model means and variances are up-
dated according to the features. This is described in detail using
the Joint and SPLICE with uncertainty forms, but is not lim-
ited to these two techniques. A solution for the Joint scheme
is presented along with the implicit approach used in SPLICE
with uncertainty. In addition, a model-based Joint uncertainty
scheme is described, which is more efficient and powerful than
the front-end schemes, and being model-based not affected by this
problem. This issue is illustrated using the AURORA 2.0 database
with these various systems.
Index Terms: model-based noise compensation, robust speech
recognition, uncertainty decoding.

1. Introduction
Speech recognition in noise has been an area of active research
for many years. Powerful model-based compensation schemes,
such as Parallel Model Combination (PMC), Vector Taylor Series
(VTS) and more recently ALGONQUIN [1], achieve good per-
formance but are computationally expensive compared to feature
compensation. Recently interest has grown in an elegant compro-
mise between model-based and front-end schemes: uncertainty
decoding, so called because a measure of the uncertainty intro-
duced by the background acoustic noise is propagated into the
recognition process [2, 3]1. For front-end uncertainty schemes,
this uncertainty is computed solely from the features.

Despite front-end uncertainty decoding achieving good per-
formance for a range of acoustic environments [3], a fundamental
problem arises. By passing a single uncertainty value to the de-
coder per frame, when the SNR is low large uncertainties can cause
all the model variances to be rendered the same. When this occurs,
the recogniser can no longer discriminate in these areas which can
result in large numbers of insertion errors. This is especially the
case when there is no other additional constraints such as a lan-
guage model, e.g. in the AURORA digit recognition task [5]. This

Hank Liao is funded by Toshiba Research Europe Ltd.
1The uncertainty decoding framework, as described here, differs from

the feature variance approach as discussed in [4].
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t only an issue with specific implementations such as SPLICE
uncertainty [2] and front-end Joint [3], but all forms based

he uncertainty decoding framework presented here.
This paper examines the cause of this fundamental issue with
t-end uncertainty decoding and how these specific implemen-
ns may be modified to address this problem. A model-
d Joint uncertainty decoding scheme is discussed that is
e effective, and actually more efficient, than standard front-
schemes without suffering from this limitation in low SNR

ditions. The issues discussed are demonstrated on the standard
ORA 2.0 digit string recognition task.

. The Uncertainty Decoding Framework
section reviews the uncertainty decoding framework [2, 3]. A

amic Bayesian network, as in figure 1, can represent the effects
nvironmental noise. Here, the noise corrupted speech observa-

Figure 1: Uncertainty Decoding DBN.

yt at time t is assumed to be conditionally independent of all
r observations given the clean speech xt and the noise nt at
time. By also assuming the clean speech and noise are gener-
by HMMs with states θn

t for the noise2 and θt for the clean
ch, the corrupted speech likelihood may be expressed as

p(yt|M,M̌, θt) =

Z
p(yt|xt,M̌)p(xt|M, θt)dxt (1)

re p(yt|xt,M̌)=
R

p(yt|xt, nt)p(nt|M̌, θn
t )dnt and M̌ the

t-end compensation model. The acoustic model M consists of
ssians each defined by a prior, cm, mean, μ(m), and variance,
). The likelihood calculation thus has two distinct parts. In

ation 1, only the first part, p(yt|xt,M̌), is a function of the
e. Front-end uncertainty decoding takes advantage of this fac-
ation, by making this conditional independent of the acoustic
els; a wide variety approaches are then possible to model the

ditional without adversely affecting decoding efficiency.
An important consideration in uncertainty decoding is
form of representation for the conditional distribution,

A single state is assumed for the noise model in this paper.
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Figure 2: Joint distribution p(x, y).

p(yt|xt,M̌). The joint distribution of the clean speech, x, and
the noisy speech, y, in the log-spectral domain, where it is as-
sumed that y = log(exp(x) + exp(n)), shown in figure 2, il-
lustrates this highly non-linear relationship and how the resultant
conditional distributions may be non-Gaussian. Nevertheless, to
model this complexity, uncertainty decoding schemes may repre-
sent the acoustic space with a GMM. From the observed noisy
data, only the most likely component n is selected for efficiency
and the form of distribution, as specified by that component, is
passed to the recogniser. For both the SPLICE with uncertainty
and the Joint schemes, the corrupted speech likelihood for state
θt can be expressed as [3]

p(yt|M,M̌, θt)∝
X

m∈θt

cmN
“
A

(n)
yt+b

(n); μ(m),Σ(m)+Σ
(n)
b

”
(2)

where A(n), b(n) and Σ
(n)
b

are derived using different approxima-
tions in the SPLICE with uncertainty and Joint schemes.

SPLICE with uncertainty [2] makes use of Bayes’ rule to ex-
press the conditional probability of the corrupted speech given the
clean speech in terms of the conditional probability of the clean
speech given the noisy. This requires an approximation for the
clean speech distribution. A single global Gaussian is used, with
mean, μ̄x,i, and variance, σ̄2

x,i, for dimension i, and restricting

A(n) and Σ
(n)
b

to be diagonal, gives

a
(n)
ii =

σ̄2
x,i

σ̄2
x,i − σ̌

(n)2
i

, σ
(n)2
bi = a

(n)
ii σ̌

(n)2
i (3)

b
(n)
i =a

(n)
ii

“
μ̌

(n)
i −

“
σ̌

(n)2
i /σ̄2

x,i

”
μ̄x,i

”
(4)

for dimension i. The parameters μ̌
(n)
i and σ̌

(n)2
i are the means

and variance respectively of (xti − yti) for the data associated
with component n of the front-end GMM. In order to ensure that
the uncertainty variance bias, Σ(n)

b
, is positive, the denominator in

equation 3 is floored. In this work, the floor is set to a fraction α

of the global clean variance, σ̄2
x,i, effectively ceiling a

(n)
ii where

a
(n)
ii = min

`
1/α , σ̄2

x,i/
`
σ̄2

x,i − σ̌
(n)2
i

´´
(5)

The next section discusses the effects of this in more detail.
In the front-end version of the Joint uncertainty decoding

scheme, the joint distribution of the clean and corrupted speech
is extracted. For component n of the front-end GMM the joint
distribution is assumed to be Gaussian with parameters»

xt

yt

–
∼ N

 »
μ(n)

x

μ(n)
y

–
,

"
Σ

(n)
x Σ

(n)
xy

Σ
(n)
yx Σ

(n)
y

#!
(6)
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compensation parameters are then given by

A
(n) = Σ

(n)
x Σ

(n)-1
yx , b

(n) = μ
(n)
x − A

(n)
μ

(n)
y (7)

Σ
(n)
b

= A
(n)

Σ
(n)
y A

(n)T − Σ
(n)
x (8)

ugh the feature transform and variance bias may be full for the
nt scheme, they are typically made diagonal for efficiency.
When applying compensation schemes, it is important to as-
the computational cost. Normally the computation of the

t-end uncertainty parameters is dwarfed by the cost of apply-
the variance bias to the large number of model variances. This
ate is simply the addition of the variance bias, plus recomput-
the cached determinant at a cost of O(d). While this compares
urable with model-based schemes, which are typically O(d2)
to full matrix operations, unfortunately for front-end uncer-

ty schemes, the bias varies every time the front-end component
ges, rather than when the acoustic environment changes.

3. Limitations of Front-End Schemes
re is a fundamental issue associated with front-end uncertainty
ding. Consider the joint distribution of the clean speech and
e shown in figure 2. Two conditional distributions, p(y|x), are
ked. The first is when there is a relatively high SNR (x = 6)
ding a highly skewed distribution that heavily peaks around

6. As the SNR increases this becomes more pronounced
l it reaches a delta function, which does not affect the clean
ch distribution when substituted in equation 1. In low SNR ,
x = 1 the conditional is very different. Here the distribution
actly the same as the corrupting noise distribution, in this case

aussian distribution with mean 3 and variance of 1

p(yt|xt,M̌) ≈ N (yt; μn
,Σn) (9)

re μ
n

and Σn are the noise mean and variance respectively.
ough this result is not novel, the implication for uncertainty
ding has not been discussed in the literature. That is, substi-

d this into equation 1, the distribution of the corrupted speech
e same as the noise distribution

p(yt|M,M̌, θt) ≈

Z
N (yt; μn

,Σn)p(xt|M, θt)dxt

= N (yt; μn
,Σn) (10)

means irrespective of the recognition model component the
ribution is always the same. For any front-end scheme, using
framework, where a single conditional is estimated and ap-

d to all model components, in low SNR conditions a frame, or
se a sequence of frames, will have no discriminatory power
een classes. With additional external restraints, such as a

ng language model, these non-discriminatory regions are man-
ble; however for situations where language model constraints

weak, for example recognising digit strings in AURORA, the
of discriminatory information can result in a large number of

rtions.
This is clearly illustrated with the front-end Joint uncer-
ty decoding algorithm presented in [3]. Figure 3 shows
clean, corrupted and front-end Joint estimate, given by
)yt + b(n), and the bias standard deviation, obtained from
), for a simple 16-component system. In regions of higher en-
speech, e.g. frames 180 to 190, Σ

(n)
b

is small. But in low
, as in frames 225 to 230, the variance is off the scale, as is
Joint estimate of the value. These large variance values are
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Figure 3: Plot of log energy for snippet from AURORA digit string
8-6-Zero-1-1-6-2, showing joint estimate, aii and variance bias.

reflected in the large values of aii associated with those regions. In
frames 225 to 230 the value is around 100. With greater numbers
of front-end components, these effects are amplified.

The reason for these very large values of aii, and associated
variance biases, becomes clear when examining what happens in
low energy speech regions to the joint distribution in equation 6. In
these SNR regions, the corrupted speech distribution will be dom-
inated by the noise (the standard masking effect), and the cross-
variance term Σ

(n)
xy becomes

Σ
(n)
xy = E

n
(xt − μ

(n)
x )(yt − μ

(n)
y )T

o
≈ 0 (11)

The clean speech and the corrupted speech will be uncorrelated.
From equation 7, this lack of correlation drives A(n) to infinity.
Given equation 11, the relationship to equation 10 becomes clearer
by re-expressing equation 2, for component m, as

p̀ yt|M,M̌, θt, m
´
=N

`
yt;Σ

(n)
yx Σ

(n)-1
x

`
μ

(m)−μ
(n)
x

´
+μ

(n)
y ,

Σ
(n)
yx Σ

(n)-1
x

`
Σ

(m)−Σ
(n)
x Σ́

(n)
yx Σ

(n)-1
x +Σ

(n)
y

´
=N

`
yt; μ

(n)
y ,Σ(n)

y

´
(12)

which in low SNR is simply the noise distribution. Hence, leaving
A(n) unconstrained may result in large numbers of insertions.

Thus, in the Joint scheme, it is inevitable that in low SNR
the correlation matrix, and hence the covariance matrix, will tend
to zero yielding extreme compensation parameters in equation 7.
This is the correct behaviour given the simple assumptions made
for efficiency, however to prevent these extremes it would be sen-
sible to limit the possible values for the compensation parameters.
The obvious approach is to examine the correlation coefficients

ρ
(n)
xy,i = σ

(n)
xy,i

“q
σ

(n)2
x,i σ

(n)2
y,i

”-1
(13)

for dimension i. The compensation parameters estimates in equa-
tion 7 can then be re-expressed in terms of this coefficient as

a
(n)
ii =

σ
(n)
x,i

ρ
(n)
xy,iσ

(n)
y,i

, σ
(n)2
b,i =

σ
(n)2
x,i

ρ
(n)2
xy,i

− σ
(n)2
x,i (14)

for the diagonal form of front-end Joint uncertainty decoding.
The compensation parameters can then be restricted by enforcing
a minimum on the correlation coefficient used in 14 as follows

ρ̂
(n)
xy,i = max(ρ

(n)
xy,i, ρ) (15)
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re ρ is an empirically set constant. Increasing the value of ρ
es the minimum acceptable correlation, decreasing the maxi-

variance bias. In the limit, it is possible to set ρ = 1, re-
ing in a zero variance bias in equation 14. The effects of this
ring on the same snippet as figure 3 is shown in figure 4. As
cipated, the extremes previously observed have disappeared.

180 190 200 210 220 230

Corrupted Speech
Clean Speech
Joint 16 Estimate
Joint +/− Std. Dev

re 4: Plot of log energy for AURORA digit string 8-6-Zero-1-
2, with correlation flooring, ρ = 0.1.

As this issue of all distributions becoming the same theo-
ally affects all front-end uncertainty decoding schemes, the
ICE with uncertainty decoding should also suffer from it.
ever the expected issues have not been observed, for example

he AURORA results presented in [2]. This is because SPLICE
uncertainty limits the maximum value of a

(n)
ii to 1/α in equa-

5. There is also an under-estimate of the value of a
(n)
ii . In

r to make the calculation of the SPLICE uncertainty efficient,
obal variance is used in the denominator of equation 3. Since
will be larger than any individual component that should be
, the scaling estimate will be lower than expected. This under-
ation becomes larger as the number of front-end GMM com-

ents increases—exactly the when a component might expected
nly be associated with a low-energy noise region. These two
ting factors on a

(n)
ii , keep the uncertainty from becoming too

e in SPLICE with uncertainty and causing this issue.

Model-Based Joint Uncertainty Decoding
front-end uncertainty decoding schemes may result in regions
o discrimination because only a single set of compensation pa-
eters is propagated from the front-end model to the recogniser.
el-based schemes do not suffer from this problem as the effec-
set of compensation parameters propagated to the recogniser

xplicitly linked to the recognition component. With model-
d Joint [3] transforms, instead of linking front-end of com-

ents to regions of the feature space, each is associated with
t of recognition model components. Similar to the front-end
nt scheme, the joint distribution of the clean and corrupted
ch features are required. For example, the cross-covariance
s between the clean and corrupted speech are given by

Σ
(r)
xy =

P
m∈rm

γm(t)xty
T

tP
m∈rm

γm(t)
− μ

(r)
x μ

(r)T
y (16)

re γm(t) is the component posterior at time instance t and rm

e set of recognition components associated with component r.
Having obtained the component parameters, the compensation
meters can be derived using equations 7 and 8. During recog-
n, in contrast to the front-end Joint scheme, all the front-
components are active and pass their measure of uncertainty

he recogniser. This operation is similar to using a multiple-
sform constrained MLLR scheme [6], but with the addition of
riance bias. The model-based scheme is actually more efficient
the front-end, since the variance bias applied to the recogni-
model-set is fixed given a particular acoustic environment, in



contrast to the front-end scheme where it will vary if either the
acoustic environment or the front-end component changes. As all
the front-end components are active, if one of them is associated
with a low energy region, such that Σ

(r)
xy is very small, then this

will only affect the recognition components in class rm, not all the
recognition components. Thus there is no problem with regions
lacking discrimination between classes.

5. Experiments
Experiments were conducted on the standard AURORA 2.0 small
vocabulary digit string recognition task [5]. The reference acoustic
model setup was used with an internal version of HTK 3.3 and its
native front-end processing; this resulted in slight differences from
HTK 2.2. Compensation parameters were estimated using stereo
data. This allows the techniques to be assessed without consider-
ing inaccuracies arising from noise estimation, or approximations
in the mismatch function. In practice, the compensation param-
eters can be estimated using PMC or VTS style schemes. The
front-end uncertainty schemes used diagonal transformations.

SNR(dB)
System 20 15 10 5

Clean 4.62 12.20 31.13 59.16
Matched 1.85 2.81 5.01 11.41

SPLICE 1.95 3.07 6.13 16.47
+Uncertainty, α = 0.1 2.15 3.22 5.95 14.50
+Uncertainty, α = 0.95 2.00 3.20 5.58 12.29
FE-Joint 22.67 25.82 28.38 34.37
FE-Joint, ρ = 0.9 1.81 2.88 5.71 14.62

Table 1: Clean, matched and SPLICE on AURORA 2.0 test set A,
averaged across N1-N4, WER(%).

Table 1 shows baseline, SPLICE and Joint systems’ perfor-
mance. The 256-component SPLICE systems approach matched
performance, significantly improving the poor clean system. To in-
vestigate the effects of the flooring α, from equation 5, on SPLICE
with uncertainty, a range of values of were tried. Performance at
the cited value of α = 0.1 in [2], can be improved slightly by
increasing it to 0.95. This can be compared against the front-end
Joint scheme. As expected, without flooring ρ, a vast number
of insertions occur. In contrast, this behaviour was not seen on
Resource Management [3] because of the constraining language
model. With ρ set to 0.9, the performance is now comparable to
the various SPLICE systems. Both these optimal flooring values
significantly reduce the uncertainty passed to the decoder.

Table 2 summarises the results of the model-based Joint ap-
proach. The number and form of transforms were explored, where
the diagonal transforms are similar to the front-end schemes and
contrasted with full matrix forms of A(r) and Σ

(r)
b . A 16 trans-

form model-based Joint scheme performed slightly worse than
appropriately floored 256-component front-end schemes, but at
considerably less computational cost; with the same number of
diagonal transforms, the model-based system is superior to all of
the front-end systems examined. Moreover, using a full transform
gave substantial gains. In low SNR, the 16 full transform model-
based system is better than matched. However as the variance bias
is a full matrix, there is the impractical cost of performing a full
covariance matrix decode, compared to the diagonal covariance
matched system. This does indicate an opportunity to obtain ex-
cellent results using this model-based Joint approach.
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Number of SNR(dB)
ystem Transforms 20 15 10 5

Diagonal Transformations
1 3.33 5.92 13.35 31.96

-Joint 16 2.47 3.82 7.25 16.63
256 1.90 2.73 5.19 12.00

Full Transformations

-Joint
1 2.43 3.82 6.97 17.14

16 1.95 2.80 4.23 9.89

le 2: Model-based Joint systems’ performance on AURORA
test set A, averaged across N1-N4, WER(%).

6. Conclusions
paper has discussed important differences within the uncer-

ty decoding framework between front-end and model-based
roaches. In the former, by only propagating a single vector
atures and probabilities, during high noise the ability to effec-

ly discriminate can be lost. This causes insertion errors in the
ch if all models are rendered acoustically equivalent. With an-
r source for discrimination, such as a language model, this can

ess of an issue as it guides the search when the SNR is low and
ertainty is high. This issue was explored on the AURORA task,
ch practically has no language constraints, using the Joint

of uncertainty decoding, where it was found that flooring
correlation was beneficial, and the SPLICE with uncertainty
, which implicitly floors uncertainty parameters. However,
el-based schemes are not affected by this problem, hence bet-

results were obtained than in front-end systems with equiva-
numbers of parameters. The best system was the model-based
nt scheme with full matrix parameters; though this increases

decoding computational cost, it does indicate the possible ben-
of this framework. Major limitations of this paper are that

eriments are conducted on artificially corrupted data and as-
e noise stationarity; however, recent work has explored using
Joint form on found data such as Broadcast News [7].
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