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Abstract
Most ASR systems adopt an all-in-one approach: acoustic model,
lexicon and language model are all applied simultaneously, thus
forming a single large search space. This way, both lexicon and
language model help in constraining the search at an early stage
which greatly improves its efficiency. However, such close integra-
tion comes at a cost: all resources must be kept simple. Achieving
higher accuracy in unconstrained LVCSR tasks will require more
complex resources while at the same time the ‘unconstrainedness’
of the task reduces the effectiveness of the all-in-one approach.
Therefore, we propose a modular two-layered architecture. First,
a pure acoustic-phonemic search generates a dense phone network.
Next a robust decoder finds those words from the lexicon that
match well with the phone sequences encoded in the phone net-
work. In this paper we investigate the properties the robust word
decoder must have and we propose an efficient search algorithm.
Index Terms: speech recognition, LVCSR, phone lattice, search.

1. Introduction
Over the years, most HMM based automatic speech recogni-
tion (ASR) systems have adopted an all-in-one approach: acous-
tic model, lexicon and language model (LM) are all applied si-
multaneously, thus forming a single large search space. This
search space is either constructed dynamically [1], statically [2]
or mixed static/dynamic [3]. Close integration introduces the task-
dependent constraints (lexicon and language model) at an early
stage in the search, and hence greatly improves the efficiency of
the search. This is especially true for constrained tasks such as
small vocabulary tasks or tasks using finite state grammars. How-
ever, close integration also comes at a cost. To allow the com-
bination of all knowledge components into a single search space,
they must be kept extremely simple. This has particularly inhibited
progress at the linguistic level. Consequently, almost all recogniz-
ers employ non-optimal linguistic components such as static lexica
(lexicalization of morphological processes) and N-gram LM’s.

We believe that, in order to meet the aims set by current re-
search programs –i.e. recognition of unconstrained speech input,
higher accuracy, less domain dependency and richer transcription
output [4]– more sophisticated linguistic models are indispens-
able. At the same time the ‘unconstrainedness’ of these new tasks
reduces the effectiveness of the all-in-one approach. In [5] we
proposed a novel modular two-layered framework called FLaVoR
(Flexible Large Vocabulary Recognition). The key aspect of the
proposed framework consists of splitting up the search engine into
two separate layers. The first layer performs phone recognition
and outputs a dense phone network, which acts as an interface to
the second layer. In the second layer, the actual word decoding
is accomplished by means of a robust decoder. The robust word
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Figure 1: FLaVoR achitecture in detail

der searches for those word sequences drawn from the lex-
that match well, albeit not always exactly, with the phone

ences encoded in the phone lattice and are considered likely
he language model.
In [5] we focused on the rationale of the FLaVoR-approach,
ifferences with existing multi-pass strategies and on the phone
der. The focus in this paper will be on the robust word de-
r. A major requirement for this decoder is robustness w.r.t.

mismatch between observed acoustics (encoded in the phone
ork) and the ideal (e.g. canonical) forms found in the lexicon.

This paper is organized as follows. Section 2 describes the
VoR-approach in more detail. The next section handles the
riments. Section 3.1 introduces the task and gives reference
lts using an all-in-one decoder. In section 3.2, the configura-
of the phone decoder (first layer) is presented. The different
gurations for the word decoder (second layer) are presented

evaluated in sections 3.3 and 3.4. We conclude the experiment
ion with a discussion. In section 4 we propose an efficient im-
entation of the robust search. We end with conclusions.

2. The FLaVoR architecture
this section, we will briefly recapitulate the FLaVoR-
itecture. For more details, the rationale behind FLaVoR and
rences with existing multi-pass strategies, we refer to [5].
Figure 1 depicts the FLaVoR architecture in more detail. In the
layer, a phone decoder determines the network of most proba-
hone strings F given the acoustic features X of the incoming
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signal. The knowledge sources employed are an acoustic model
p(X|F ) and a phone transition model p(F ). The resulting phone
network can be augmented with meta-data (prosody, speaker iden-
tity, etc.) in order to provide rich information to the second layer.

Important to note is the isolation of the low-level acoustic-
phonemic search from the the higher layers by means of a dense
phone network. This decoupling is made possible by the high
quality of current acoustic modeling and by an extension of the
so-called word-pair approximation [6]. For a formal description
of this extension we refer to [5]. The decoupling of acoustic and
word decoding significantly lowers the event rate. First, there is a
pure reduction in data rate, from the 100 feature vectors per sec-
ond at the input to an average of 12 phones (plus alternatives) per
second at the output. In addition, the number of parallel options
each input stands for is reduced: while a monolithic search engine
has to match all incoming feature vectors with all possible com-
binations of (context dependent) phones and end positions at that
point in the search, the phone network only contains the set of best
matching phones with their optimal start and end times. This opens
up the possibility of using more complex linguistic components in
the word decoder. Another important aspect is the generic nature
of the first layer for a full natural language. That is, the phone
recognizer can function in any knowledge domain for a specific
language. In addition, the phone information itself could be used
in certain applications (e.g. language learning) or for handling spe-
cific problems (e.g. recognition of proper names).

The phone network and associated meta-data serve as input to
the second layer which performs the actual word decoding. The
primary knowledge sources used in this pass are the lexicon and
the language model, or more generally, a morpho-phonological
and a morpho-syntactic component. The morpho-phonological
component converts the phone network into sequences of mor-
phemes. The morpho-phonological knowledge consists of a mor-
pheme lexicon, constraints on morpheme sequences and pronunci-
ation rules. All knowledge sources will be combined into one finite
state transducer (FST). As was illustrated in the work at AT&T [2]
and by ourselves [3], such transducers are a very compact and effi-
cient solution for decoding. The pronunciation rules qualitatively
and quantitatively describe the contextual influence on the pronun-
ciation of a sequence of phonemes. More precisely, probabilistic
context-dependent rewrite rules formalize the processes of assim-
ilation, insertion, etc. on the intra- as well as the inter-word level.
As such these rules provide the indispensable link between the iso-
lated standard phonemic transcription of morphemes as found in
the morpheme lexicon and their realization in ‘real-life speech’.
The morpho-syntactic language model provides a probability mea-
sure for each hypothesized word based on morphological and syn-
tactic information of the word and its context.

The search algorithm links input and knowledge sources to-
gether. Next to being efficient, this decoder must also be robust
w.r.t. the mismatch between observed acoustics (encoded in the
phone network) and the transcriptions provided by the morpho-
phonological component. Since only regular pronunciation alter-
nations can be described in the morpho-phonological component,
it is up to the search to cope with non-regular pronunciation vari-
ants such as dialectical influence, swallowed sounds in fast pro-
nunciation and slips of the tongue. Furthermore, the word decoder
must also be robust w.r.t. errors made by the phone recognizer.

Although the need for a ‘robust’ decoder complicates the sys-
tem, it should not be considered a weakness. In classical decoders,
all deviations between the canonical transcriptions in the lexicon
and the observed acoustics must be modeled by the acoustic mod-
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tup feb89 oct89 feb91 sep92 mean
all-in-one decoder

ference 2.26 2.83 2.13 5.08 3.08

FLaVoR phone decoder
one error rate 8.84 10.2 8.89 12.4 10.1

FLaVoR word decoder
seline 4.88 5.25 3.95 8.05 5.54
seline + filler 3.75 4.58 3.58 7.97 4.98
ler + rules 3.55 4.17 3.30 7.97 4.75
s/del + rules 2.77 3.65 2.90 5.47 3.70
gle error + rules 2.30 2.87 2.58 4.81 3.14

e 1: Error rates on the RM test sets using the XL phone lattices

leading to ‘contaminated’ models. The FLaVoR-approach iso-
these phenomena and describes them explicitly, and hence

e correctly, by means of rules (regular processes) and a sub-
tion matrix (irregular processes). As is reported in [7] there is
ence that human speech recognition works in similar ways.

3. Experiments
Task & reference results

Resource Management (RM) task, being a constrained task
rd pair grammar) with a limited vocabulary (991 words), is not
est match for the FLaVoR-architecture which aims at uncon-

ned large vocabulary speech recognition (LVCSR). However,
is a compact well defined task with few tuning parameters1

hence is ideal for the development of new techniques.
For all experiments, we used our in-house state-of-the-art
ch recognition system [8]. For the acoustic models we used
default shared gaussian approach, i.e. the density function for

of the 791 cross-word context-dependent tied states is mod-
as a mixture over an arbitrary subset of gaussians drawn from

obal pool of 7487 gaussians. The mixtures use on average
.7 gaussians to model the 36 dimensional observation vector.
36 dimensions were obtained by means of a mutual informa-
based discriminant linear transformation [8] on 24 MEL spec-
nd their first and second order time derivatives. The word error
(WER = ins. + del. + sub.) obtained with the acoustic models

g our existing all-in-one decoder are given in table 1.

Layer1: phone decoding

rder to evaluate the two layer FLaVoR-approach, a properly
gured phone decoder is needed. A phone trigram was esti-

ed from an automatically generated reference phone transcrip-
of the train database. To create these reference transcriptions,
onverted the orthographic transcription of each sentence into a

ne network by means of a pronouncing dictionary and a limited
f assimilation rules, and used the Viterbi algorithm to decide
he best path through the network given the acoustic signal.
configuration parameters of the phone decoder (weighting of
hone trigram w.r.t. the acoustic likelihoods) were determined

g the feb89 test set. Hence, we choose the weighting that min-
es the differences (phone error rates) between the output of the

ne recognizer and the reference transcription. The error rates
ined with the phone decoder are given in table 1.

next to the parameters that control the search effort, only a single
d-startup-cost’ is used to balance the impact of the acoustic model
the word pair grammar



S M L XL
properties of the phone lattices

density 3.20 4.21 5.33 7.41
event rate 4.46 7.93 14.6 31.1
fan-out 3.36 3.95 4.56 5.48
lattice error rate 1.37 0.98 0.72 0.44

FLaVoR word error rates
baseline + filler 7.80 6.85 5.87 4.98
single error + rules 4.33 3.68 3.39 3.14

Table 2: Phone lattice statistics and FLaVoR word error rates

The phone decoder was used to generate phone lattices of four
different sizes (S, M, L, and XL). The main properties of the ob-
tained lattices are given in table 2. The density is measured as the
average number of different phones (ignoring the context) in par-
allel per frame in the phone lattices. The event rate is the average
number of arcs (context dependent phones) that start per frame.
The fan-out is the average number of arcs leaving a node. The lat-
tice error rates are the phone error rates (ins. + del. + sub.) of that
path from the phone lattice that matches best with the reference
transcription.

3.3. Layer2: Robust word decoding

As baseline experiment, we rescored the phone lattices using an
FST formed by composing lexicon and LM, i.e. a transducer that
maps phones to words and upholds the LM constraints. Since this
baseline transducer contains no techniques to recover from ‘errors’
in the phone lattice, it fails to produce output when not a single
trace in the phone lattice corresponds to a valid phone sequence
in the FST. To prevent this, we added a ‘filler’ word to the lexicon
consisting of a single arbitrary phone. The ‘filler’ may be observed
after any word and can be followed by any word, even itself. The
insertion penalty of the ‘filler’ is set high as to assure that it is only
used where the baseline transducer would block. Table 1 shows the
results obtained with and without the ‘filler’ when rescoring the XL
phone lattices. All lattice rescoring was done with a pseudo time
synchronous beam search decoder. Even without pruning, process-
ing the lattices of a complete test set only took a few seconds. This
shows that the low event rate of the phone lattices can significantly
reduce the search effort in the subsequent decoding stages.

The assimilation rules in the morpho-phonological component
of the FLaVoR-architecture provide robustness w.r.t. regular pro-
nunciation alternations. To evaluate this aspect on RM, we cre-
ated pronunciation rules to handle degemination and to (option-
ally) split syllabic segments into the two composing phonemes,
i.e. a schwa followed by an /n/, /m/, /l/ or /r/. The probability of
any alternation w.r.t. the canonical form was set (arbitrarily) to
10%. The rules were kept rudimentary since the tests on RM only
serve as proof of concept2. Moreover, we expect the phone lattices
to contain the non assimilated phones for more subtle pronuncia-
tion variations such as voicing assimilation. The search space now
consists of the pronunciation rules composed with the lexicon (in-
cluding the ‘filler’ word) and the LM. As shown in table 1, model-
ing the pronunciation variation has a positive effect, but is by itself
insufficient to lower the WER to that of an all-in-one decoder.

2Ultimately, the goal of the two layer approach is the incorporation of
more precise linguistic models that are, to a certain aspect, generic for a
language. In the FLaVoR project, both accurate morpho-phonological and
morpho-syntactic models are being developed for the Dutch language.
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As first technique to cope with non-regular alternations, we al-
d arbitrary phone insertions and deletions, i.e. we allow (1)
phone in the lexicon (after applying the assimilation rules) to
eleted and (2) an arbitrary number of insertions before and af-
ny phone in the lexicon. Insertions and deletions are controlled
a single parameter each, i.e. the costs are phone independent.

stitutions are not modeled explicitly since they can be seen as
sertion followed by a deletion (note: the cost of a substitution
t a free parameter), and because we assume that likely substi-
ns are already present in the phone lattice. As this technique
cope with arbitrary alternations, the ‘filler’ word is no longer
ed. Table 1 indicates that this simple scheme is reasonably

ctive but still not able to completely bridge the gap w.r.t. an
n-one approach. A major down side of this simple scheme is
it leads to slow decoding: by following a sequence of phone
tions, likely search tokens spread to many new locations in
search space. In an all-in-one decoder arbitrary deletions are
allowed, and hence this spreading a likely tokens is effectively
teracted by the minimal duration constraints imposed by the
te left-to-right phone HMMs.
In order to further lower the WER, we need more accurate
eling of the error phenomena. Yet, at the same time we need
pose extra constraints on the error model to prevent excessive

ading of the likely tokens. We satisfy both requirements with
single error model’. The more accurate modeling is obtained
llowing insertions, deletions and substitutions, and by having a
plete cost matrix (i.e. phone dependent costs). The extra con-
nt comes from the fact that after any ‘error’, we require the
phone to be correct. In other words, an arbitrary substitution,

rtion or deletion can occur anywhere in the phone lattice as
as it is isolated by at least one correct phone before and after

ocation of the alternation. Figure 2 shows the FST with which
aseline transducer must be composed to allow ‘single errors’.
probabilities in the phone alternation matrices (ins. + del. +

) were estimated using a Viterbi style training that maximized
ikelihood of phone lattices generated on the train set given the
matically generated reference phone transcription. During this
edure, we noticed a strong difference between the phone lat-
produced on the train set and those produced on the test sets:

attice error rate for the train set is, depending on the size of the
ce, a factor 5 to 10 lower than that of the test sets. This is a di-
consequence of the maximum likelihood (ML) training of the
stic models: the likelihood of data point in the train set must
ade as high as possible, and since probability densities must
rate to 1.0, the likelihood of all other data points (including

e in the test sets) must be as low as possible. Consequently,
points from the train set tend to favor the HMM states they
assigned to during the training, which in turn strongly biases

utput of the phone recognition towards to the phone transcrip-
used for the training. Given the different behaviour between
and train data, we enforced a high degree of smoothing on the
abilities in the phone alternation matrices.
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sub(phon,A)

del(phon)

process phone lattice arc:

Figure 3: Efficient implementation of the ‘single error model’

3.4. Discussion

Table 1 shows that despite the crudeness of the resources used
(over simplistic assimilation rules, ill estimated probabilities in the
phone alternation matrices and various other sub-optimalities), the
FLaVoR-decoder is capable of achieving results as good as those
of an all-in-one decoder. Right now, the crudeness of the resources
necessitates the use of large phone lattices. However, as can be
seen in table 2, the addition of better (more realistic) schemes to
achieve robust word decoding reduces the impact of lattice density
on the final WER.

In order for the FLaVoR-approach to reach its full potential,
several sub-optimalities have to be remedied. First, we need better
estimates for all probabilities in the assimilation rules and the error
model. This requires an accurate phonetic transcription of the train
database. The automatic methods we use right now are hampered
by the strong bias the acoustic models have when handling train-
ing samples. Leaving-one-out techniques should solve this. Since
in ML training each speaker corresponds to a set of occurrence
counts, it may suffice to remove the counts of the train speaker at
hand, hence eliminating the need for full leaving-one-out training.

A second improvement lies in the acoustic models. The cur-
rent models were designed for an all-in-one decoder, i.e. all cross-
word effects are simply trained into the context-dependent phone
models. To be optimal for a FLaVoR-approach, at least the regular
pronunciation alternations should be removed from the acoustic
models by using assimilation rules during the training. It should
even be possible to use a FLaVoR-style forced alignment (using
the ‘error’ model) on the train set to resolve the non-regular phe-
nomena, hence obtaining ‘uncontaminated’ phone models.

A last sub-optimality lies in the configuration of the phone
recognizer. Tuning this component to achieve minimal error rates
may not be optimal since this favors phone deletions. Tuning for
fewer deletions may reduce the reliance on the error model to cope
with the deletions, and hence improve the WER.

4. Efficient implementation
While the prototype uses FST techniques throughout, the final
system will rely on FST’s for the morpho-phonological compo-
nent (lexicon and pronunciation rules) only. Limiting the morpho-
syntactic components to FST’s would severely limit the type of
modeling that could be used. In fact, even our current all-in-one
decoder allows almost any type of LM by means of a dynamic
integration of the LM info [8].

It is feasible to incorporate the ‘single error model’ in the
search by means of an FST – we used this technique for all ex-
periments reported on in this paper. However, this is very ineffi-
cient since the knowledge that every ‘error’ must be followed by
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xact match cannot be exploited. A direct implementation of
error model as depicted in figure 3 is far more efficient. The
n ‘trick’ is to delay the traversing of the insertion and sub-
tion arcs in the error model until a next phone lattice arc is
essed. Hence, any error transition is processed in conjunction
the required subsequent match. The explicit requirement of a
equent match assures that only few insertion and substitution
sitions will be possible, thus reducing the overhead of the error
el drastically. In order to delay a transition, an extra ‘pending’
has to be introduced. Hence, tokens in the search are now

ribed by (1) the lexicon state, (2) the LM state, (3) the state
e phone lattice, and (4) a pending/correct state where a pend-

state also contains the phone that was withheld. Propagating a
n requires testing and/or taking five possible transitions: three
r transitions, the ‘correct’ transition, and a ‘preemptive’ tran-
n needed to delay the error transitions.

5. Conclusions
presented a flexible, layered architecture for LVCSR which
tes the low-level acoustic-phonemic search from the the
er layers by means of a dense phone network. In this paper,
ocused on the second layer: the word decoder. We proposed

bust and an efficient decoding strategy that achieves results as
d as those of an all-in-one decoder, and yet at the same time
has substantial room for further improvements.
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