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Abstract 
The Mel-frequency cepstral coefficients (MFCC) are most 
widely used and successful features for speech recognition.  
But, their performance degrades in presence of additive noise. 
In this paper, we propose a noise compensation method for Mel 
filter bank energies and so MFCC features. This compensation 
method includes two steps: Mel sub-band spectral subtraction 
and then compression of Mel-Sub-band energies. In the 
compression step, we propose a sub-band SNR-dependent 
compression function. We use this function instead of logarithm 
function in conventional MFCC feature extraction in presence 
of additive noise. Experimental results show that the proposed 
method significantly improves MFCC features performance in 
noisy conditions where it decreases word error rate about 70% 
in SNR value of 0 dB for different types of additive noise.  
Index Terms: Mel sub-bands, spectral subtraction, SNR-
dependent compression, MFCC

1. Introduction 
Traditional speech features are typically extracted from power 
spectrum or amplitude spectrum of speech signal. Then, when 
speech spectrum is changed due to presence of additive noise, 
these features show a high sensitivity to the noise. This usually 
results in performance degradation of speech recognition system 
in presence of additive noise.   
Several techniques have been proposed to reduce sensitivity of 
features to external noise. In some approaches, a transformation 
is directly applied to feature vectors to compensate noise effects 
on them. Sometimes, the transformation is applied to cepstral 
domain such as cepstral mean normalization (CMN) [11]. In 
some other kinds of such techniques the transformation is 
applied to logarithm of spectrum or logarithm of filter bank 
energies (LFBE) such as vector Taylor series [11] and weighted 
Mel filter bank analysis [4][9].  
Some other groups of methods work at the spectral level. These 
methods try to reduce the effect of additive noise on the speech 
spectrum and then extract features. Spectral subtraction [8][11] 
and different spectral filtering techniques are well known 
examples of such methods. Spectral subtraction, subtracts an 
estimation of noise spectrum from speech power spectrum to 
remove noise effects from it. Phase autocorrelation (PAC) is 
another example of these techniques that is recently introduced 
[7]. It tries to make autocorrelation coefficient less sensitive to 
additive noise [1][7]. Group delay function (GDF), negative 
derivative of speech phase spectrum, is another technique which 
can be used for robust feature extraction [6]. In group delay 
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ction, features derive from speech phase spectrum instead of 
ech power or amplitude spectrum [6]. 
this paper, we propose a transformation for applying to Mel 
-bands energies in order to remove noise effects from MFCC 
tures. Our proposed method includes two steps: Mel sub-
d spectral subtraction and then SNR-dependent sub-band 
rgy compression in place of logarithm function. While other 
rks only use weighted logarithm of Mel filter bank energies 
[3][4][5][9] or only noise subtraction [2][8], we propose to 
efit from sub-band spectral subtraction along with SNR-
endent sub-band compression without using logarithm 
ction. 
e remainder of this paper is organized as follows. In Section 
we propose our framework for removing noise effects from 
CC features. Section 3, describes the used method for Mel 
-band spectral subtraction. In section 4, we define our SNR-
endent compression function for Mel-sub-band energies. 
tion 5 includes our experiments and results. Finally, we give 
 conclusion in section 6.  

. Proposed Framework for Compensating 
of Noise Effects on MFCC features  

e conventional Mel-frequency cepstral coefficients (MFCC) 
w a very good performance for clean speech recognition.   In 
te of their popularity, they have this weakness that they show 
r performance in noisy conditions. To overcome this 
blem, we propose a framework to compensate additive noise 
ects on MFCC features. So, we first discuss the general 
cess of MFCC feature extraction from the speech signal. 
sume that x(n) represents the frame of a speech signal that is 
-emphasized and hamming windowed. The frame x(n), 
ere 1 n N, is transformed from time domain to frequency 

ain by applying an N-Point fast Fourier transform (FFT) 
 the resulting amplitude spectrum is shown by |X(k)|, where 

N, and k is frequency index. Then, the filter bank energy 
passing through i-th Mel scaled critical band band-pass filter 
k) is calculated as follows: 

N

k
i

X kkXE
i

1

2 )(.|)(|         (1) 

ere 1 i M, and M is number of Mel-scaled triangular band-
s filter. After this, a discrete cosine transform (DCT) is 
lied to logarithm of filter bank energies. Thus, the Mel 

quency cesptral coefficients for frame x can be expressed as: 
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where 1 l L, and L is desired number of cepstral features.  
Assuming that x(n) is noisy speech frame, we define our 
proposed noise compensation framework based on filter bank 
energies calculated in relation (1). The general form of proposed 
method can be shown by:  

i
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where
^
X
iE  is compensated Mel filter bank output and wi and bi

are compensation parameters. The parameter wi is the 
compression factor and the bias bi depends on noise spectral 
characteristics. 
Relation (3) includes two steps: the subtraction and then filter 
bank energy compression. In the subtraction step, we reduce the 
filter bank energy increased due to presence of additive noise. 
After that, in the compression step, we emphasize those filter 
bank energies less affected by noise and distortion generated by 
the subtraction. 
In the subtraction step, we must estimate parameter bi for each 
Mel sub-band and then do the subtraction. For this purpose, we 
use the noise estimation in Mel sub-bands and then we perform 
Mel sub-band spectral subtraction. We will discuss this method 
in section 3. In the compression step, we use from sub-band 
SNR-dependent compression factor in order to put emphasis on 
Mel sub-bands less affected by noise and distortion created after 
the subtraction. 
After these two steps, we can calculate the compensated MFCC 
using following equation: 
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where
^
x
l

c  show compensated MFCC. 

It can be seen from equation (4) that we replace logarithm 
function by the proposed compression function. This function 
discriminates filter bank energies better than logarithm function 
in presence of additive noise. The usefulness of a compression 
function in comparison to logarithm function has shown in root 
cepstral analysis [5][12]. In addition, from the viewpoint of 
psychoacoustic, the compression process is also performed in 
human's ear, where the sound intensity is converted to the 
perceived loudness [5].  
Fig. 1 shows our general proposed method for removing noise 
effects from MFCC features. In the following sections, we 
discuss each of two mentioned compensation steps in detail. 

3. Mel Sub-Band Spectral Subtraction 
Conventional power spectral subtraction is defined as follows    
[8][11]:
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where
^

2|)(| kS ,|X(k)|2 and |N(k)|2  are the power spectra of 
enhanced speech, noisy speech and estimated noise, 
respectively.  is over-estimation factor and  is to define 
spectral flooring. 
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ig.1. Block diagram of proposed method  for compensating   
of noise effects on MFCC features 

this paper, we use Mel sub-band spectral subtract ion that is 
re useful than full-band spectral subtraction as mentioned in 
. Mel sub-band spectral subtraction relation is defined as: 
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ere Ei
ss is enhanced filter bank energy after Mel-sub band 

ctral subtraction and i and i are over-estimation factor and 
ctral flooring parameter in i-th Mel sub-band, respectively. 
 is the output of i-th triangular Mel scaled band-pass filter 
en estimated noise |N(k)|2 is passed through Mel filter bank. 
an be defined as follows:  
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ing equation  (6), we can compute parameter bi in equation 
 as: 
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cording to equation (8), the parameter bi depends on energy 
estimated noise in i-th Mel sub-band and its corresponding 
r-estimation and spectral flooring factors. For estimating 
se at Mel-sub-bands, we firstly estimate the noise power 
ctrum at the duration of 300 ms where only the noise is 
sent. We use from following smoothing equation for the 
se power spectrum estimation: 

2
1

2 |)(|)1()()(|)(| kBkPkPkN ttt
(9)

ere Pt-1(k)and |Bt(k)|2 are estimated noise power spectra in 
vious t-1 frames and  current frame, respectively.  is  
getting factor and k is frequency index. We have selected 
98 in this work as in [10]. The estimation of noise in i-th Mel 
-band is obtained using equation (7). 

. Compression of Mel Sub-Band Energies 
e property of logarithmic compression of Mel filter bank 
rgies is reduction of their dynamic range. This property has 



two drawbacks in presence of additive noise. First, it can not 
emphasize on sub-bands energies that less affected by noise. 
Second, some distortions that are insignificants in power 
spectrum domain may become important after the logarithmic 
compression of Mel filter bank energies. In other hand, DCT is 
a linear transform that gives equal weights to all compressed 
sub-band energies. These disadvantages of DCT and 
logarithmic compression make MFCC features highly sensitive 
to additive noise. One solution to this problem is weighting of 
logarithm of filter bank energies as done in [3][4][9]. Another 
existing solution is root cepstral analysis [12] which substitutes 
the logarithm function with a root function. The root function 
uses a constant root for filter bank compression and is more 
immune to noise in comparison to logarithm function. The root 
Mel-frequency cepstral coefficients are computed as follows: 
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where rcl
x denotes the root MFCC (RMFCC) features,  is 

constant root with a value between 0 and 1,and i is Mel filter 
index.
Although, using a constant root  is better than logarithm 
function in presence of noise, but it is also a sub-optimal 
approach. Because, it doesn't notice to way that noise affects on 
Mel frequency sub-bands. In this paper, we propose a 
compression function that uses from SNR in Mel sub-bands. We 
define our proposed compression function for determining wi in 
equations (3) and (4) as: 

)exp(1.
i

i
i

SNR
w  (11) 

where  is a constant root and i  is the gain to control the 
steepness of the compression function. SNRi is signal to noise 
ratio in i-th Mel frequency sub-band computed as: 
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where square root has been used for reducing the dynamic range 
of energy ratio and Ei

ss and Ei
N have been defined in equations 

(6) and (7).  
The parameter i in the compression function is calculated based 
on SNRi as follows: 

(13)
exp1

1

SNR

SNRiSNR
i

where SNR and SNR are mean and standard deviation of SNRi
computed from all of Mel frequency sub-bands of the speech 
frame.  Fig.2 shows i values in different Mel sub-bands of a 
speech frame and corresponding SNRi values. It can be seen 
from the figure that when SNRi is high, i  has a small value. In 
such cases, wi in equation (11) is very close to constant root .
In this figure, when SNRi  is low, i  has a value near to 0.6. 
This cause that wi  in equation (11) becomes a fraction of  and 
so becomes less than .
Therefore, according to equation (11), the compression root wi
increases with a slope in accordance with the sub-band SNR. 
When sub-band SNR is smaller, this slope is steeper. So, when 
SNRi is low, the compression root wi decreases. On the other 
hand, for large SNRi values, compression root wi is simplified to 
the constant root  presented in root cepstral analysis.  
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5. Experiments and Results  
 report our results on TIMIT database for isolated word 
ognition. Two sentences from speakers in two dialect regions 
re selected and were segmented into words. In this way, we 
e 21 words spoken by 151 speakers including 49 females 
 102 males. These speakers were divided into train and test 
akers according to TIMIT speakers division. Our training set 
tains 2349 utterances spoken by 114 speakers. The testing 
includes 777 utterances spoken by 37 speakers. Our 

ognizer is CDHMM with 6 states and 8 Gaussian mixtures 
 state which is trained on clean speech. Three types of 
itive noises were used: white, pink and factory noises 
cted from NOISEX92 database. We added these noises to 

h training and testing sets. Our feature vector in all cases 
nventional or compensated form) contains 12 MFCC features 
 12 delta-MFCC features and so its length is 24. 
 evaluating our proposed compensation method, we have 
 used Mel sub-band spectral subtraction in company with 

 conventional logarithm function. This can be expressed by 
owing equation:  
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ere sc denotes the obtained MFCC feature. Ei
SS was also 

ined in equation (6). We show this feature by LMSBS that is 
abbreviation for Logarithm and Mel Sub-Band Spectral 
traction.   
 also use from word CMSBS for our proposed method which 
ds for Compression and Mel Sub-Band Spectral subtraction. 
 have chosen i =1 and i ==0.1 for all Mel sub-bands in 
ations (6) and (8) based on empirical results. Additionally, 

 have given the value of 0.5 to constant root  in order to 
ermine wi in equation (11). Moreover, we compare CMSBS 
thod with constant root cesptral analysis where we choose 
 constant root equal to 0.5. This means that  is equal to 0.5 
quation (10). This can be written as: 
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 show the MFCC features obtained form equation (15) by 
FCC (Root MFCC).  
thermore, we have performed Mel spectral subtraction 
ether with constant root  =0.5 that can be shown by:  

M
ilEsrc

M

i

SSx
il 2

)12(
.cos)(

1

5.0        (16) 

ere src denotes the obtained MFCC feature. Ei
SS was also 

oduced in equation (6). We use the abbreviation RSMFCC
 MFCC features obtained from equation (16). 
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Fig. 3 shows word error rate in presence of 3 different noise 
types (factory, pink and white) for different SNR values. The
results are reported for all 3216 utterances of testing and 
training noisy database. We have shown the baseline MFCC 
results in top of figures in order to demonstrate proposed 
method results more clearly.  As can be seen in the figure, the 
proposed method CMSBS has the lowest word error rate among 
other methods in presence of all three noise types. It can be seen 
that results of all methods are very significant and noticeable in 
comparison to conventional MFCC, especially in low SNR 
values. In SNR value of 0 dB, CMSBS word error rates are 
10.15%, 7.75% and 6.84% for white, pink and factory noises, 
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pectively, while the conventional MFCC has a word error 
 higher than 80% for all three types of noise. After CMSBS, 

MFCC (Mel sub-band spectral subtraction followed by 
stant root) has the highest recognition result for all SNR 
ues.  RSMFCC is a special case of CMSBS that uses from 
stant root instead of SNR-dependent compression root. 
thermore, LMSBS method (Mel sub-band spectral 
traction followed by logarithm function) has lower word 

or rate in comparison to RMFCC method that only uses 
stant root without any noise subtraction.  

6. Conclusion 
 proposed a general framework for compensating of noise 

ects on MFCC features. This method included two steps. 
st, we applied a sub-band spectral subtraction to energies of 
l filter bank. After that, we used a sub-band SNR-dependent 
pression function instead of logarithm function in 

ventional MFCC features for more robustness to noise. 
sults show that the proposed method significantly decreases 
rd error rates in presence of different additive noises with 
ferent SNR values. In SNR value of 0 dB, it decreases word 
or rates about 70% in comparing to conventional MFCC 
tures. As future work, we plan to optimize our proposed 

pression function and use voice activity detectors to obtain 
etter estimation of noise in Mel sub-bands. 
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