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Abstract 
The aim of this work is to examine the correlation between 
audio and visual speech features. The motivation is to find 
visual features that can provide clean audio feature estimates 
which can be used for speech enhancement when the original 
audio signal is corrupted by noise. Two audio features (MFCCs 
and formants) and three visual features (active appearance 
model, 2-D DCT and cross-DCT) are considered with 
correlation measured using multiple linear regression. The 
correlation is then exploited through the development of a 
maximum a posteriori (MAP) prediction of audio features solely 
from the visual features. Experiments reveal that features 
representing broad spectral information have higher correlation 
to visual features than those representing finer spectral detail. 
The accuracy of prediction follows the results found in the 
correlation measurements. 
Index Terms: audio-visual speech, correlation, AAM, formants. 

1. Introduction 
It is well known that humans utilize visual information to 
enhance their perception of speech especially when the audio is 
corrupted by noise [1]. This audio-visual bimodal nature of 
speech production and perception has attracted much research 
over the past two decades and has been applied to both robust 
speech recognition and enhancement. For speech recognition, 
work has shown that combining audio and visual features can 
significantly improve accuracy in noise [2,3]. For speech 
enhancement, some systems re-synthesize the speech using 
clean speech parameters extracted from a combination of noisy 
audio and clean visual features. For example, [4] synthesizes 
speech using excitation extracted from the audio signal and a 
vocal tract filter obtained from a combination of audio and 
visual features. Alternatively, [5] derives a Wiener filter from 
visual features for removing noise from the audio speech signal. 
The Wiener filter is created from clean spectral envelope 
estimates obtained by utilizing the correlation between audio 
and visual information. 

To effectively utilise visual information for speech 
enhancement there must exist sufficient correlation between 
audio and visual features. Several studies [6,7] have measured 
the correlation between acoustic (audio), face movement 
(visual) and articulatory features. Rather than using visual 
features directly, these investigations have used markers 
positioned around the face. The experiments have revealed that 
correlation exists between face movement and acoustic features, 
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ough less than that which exists between articulatory 
ures and audio features.  
The aim of this work is to examine the correlation between a 
e of different audio and visual speech features and 

sequently to use this to examine the effectiveness of 
icting clean audio features from visual features. The 
ysis will determine which visual feature offers highest 
elation to audio features. The motivation for this is to 
tify audio-visual feature sets that can provide clean spectral 

elope estimates for the purpose of enhancing noise corrupted 
ch. Three different visual features and two different audio 

ures are used in the correlation measurement. These are 
ussed in sections 2 and 3. Multiple linear regression is used 
the method of measuring correlation between the visual 
ures and components of the audio features. This is discussed 
section 4. A maximum a posteriori (MAP) method for 
icting clean audio features from visual features is also 

eloped in this section as a way of exploiting the correlation. 
tion 5 presents experimental results that compare the 
elation of the two audio features with the visual features. 
ults are also presented on the accuracy of formant frequency 
iction from visual features. 

2. Visual feature extraction 
ual feature extraction techniques fall into two main 
gories; model-based (shape) and pixel-based (appearance) 
 This section briefly discusses three different visual features 
 will be used in the correlation analysis. Two pixel-based 
ures are considered, 2-D discrete cosine transform (DCT) 
 cross-DCT, while the third is derived from an active 
earance model (AAM) and is a combination of shape and 
earance. For consistency all three visual features are 
esented by M=14 dimensional vectors.  

Active appearance model (AAM)

 AAM is a frequently used method of visual feature 
action and statistically models shape and appearance 
rmation [8]. From a set of training images, labeled with 
mark points, the AAM uses image warping to deform each 

ge to a mean shape and then builds a statistical model 
bining shape and appearance across the object. Given a test 
ge the AAM minimizes the difference between its 
hesized image and the actual image by varying the model 
meters as well as incurring some displacements in position, 
e, and orientation. Features of the final synthesized image 
extracted at the end of the search process to generate a 
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M=14 dimensional visual vector, xAAM. Further details are given 
in [8]. 

To determine the best part of the face from which to extract 
visual features, AAM features were extracted from different 
facial regions of interest (ROI) and visual speech recognition 
accuracy measured. These preliminary results established that 
extracting AAM features from the lower half of the face gave 
best performance. Figure 1a shows an example image from the 
database (discussed in section 5) while figure 1b shows the 
distribution of landmark points on the lower half of the 
speaker’s face. Figure 1c shows the warped image of the lower 
face generated by the visual vector extracted from the image. 

       
a)   b)    c)  

Figure 1: a) Original image,  b) distribution of landmark 
points on lower face,  c) warped image of lower face. 

2.2. Two-dimensional DCT 

The 2-D DCT is a common method of extracting pixel-based 
visual features from an image of a speaker’s mouth [3]. In this 
work a 2-D DCT is applied to a 200x200 pixel median-filtered 
ROI centralized around the mouth. Following the 2-D DCT, the 
energy from the image is concentrated in the lower coefficients 
of the resulting matrix. The final visual vector, x2DDCT, is 
obtained from fourteen 2-D DCT coefficients extracted in a 
zigzag order, 

[
]3,12,21,30,40,31,2

2,13,02,01,10,20,11,00,0
2

,,,,,

,,,,,,,

cccccc

ccccccccDDCT =x  (1) 

where ci,j is the coefficient of the ith row and jth column. 

2.3. Cross DCT 

As a simple alternative to the 2-D DCT visual feature, some 
audio-visual systems extract a horizontal row and vertical 
column of pixels from the center of the mouth [3]. One-
dimensional DCTs are applied to the horizontal and vertical 
vectors of pixels. The resulting vectors are truncated to include 
the 7 lowest-order coefficients and the two vectors concatenated 
to produce a single 14-D visual vector, xCrossDCT. 

3. Audio feature extraction 
Two different audio features are considered in this work. The 
first are mel-frequency cepstral coefficients (MFCCs) as 
frequently used in speech recognition. MFCCs are a 
perceptually motivated representation of speech and through 
inversion can provide a spectral envelope estimate. In fact, 
recent work has shown that intelligible speech can be 
reconstructed solely from MFCC vectors [9]. The second audio 
feature comprises the first four formant frequencies. Formants 
are a useful acoustic parameter that measure resonant 
frequencies in the vocal tract. 
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. MFCC feature extraction 

CC features have been extracted according to the ETSI 
ora distributed speech recognition standard to give a 14-D 
io vector, yMFCC, comprising MFCCs 0 to 12 and log energy 
. Each MFCC vector is computed from a 25ms frame of 
ch at a rate of 100 vectors per second. 

. Formant frequency extraction 

 first four formant frequencies were extracted from 25ms 
es of speech using linear predictive analysis. These initial 
ant frequency estimates are then refined through Kalman 

ring [11] to create a four dimensional audio feature vector, 
mant=[F1, F2, F3, F4], at a rate of 100 vectors per second. 

4. Analysis of audio-visual features 
 section first explains how multiple linear regression is used 
measure correlation between audio and visual speech 
ures. Secondly, based on this correlation, a MAP prediction 
udio features from visual features is developed. 

. Measurement of audio-visual correlation 

 audio and visual features are analysed by measuring the 
elation between each element of the audio feature vector and 
entire visual feature vector using multiple linear regression 
. A linear model is developed which describes the relation 
een the visual features (the independent variables) and the 

io feature (the dependent variable). Multiple linear 
ession enables each element of the audio feature vector, y(j), 
e represented in terms of the elements in the visual vector, x, 
g a set of M+1 regression coefficients, {bj,0, .., bj,m, .., bj,M}, 
ch are specific to the jth element of the audio feature vector, 

) ( ) ( ) ( ) ε+++++= Mxbxbxbbj Mjjjj ,2,1,0, 21 K , 1≤j≤M    (2) 

re ε is an error term. Using a set of training data, least 
ares estimation can be used to determine the regression 
ficients [12]. These regression coefficients can be used to 
e a prediction of the jth element of the ith audio feature 
or, ( )jyiˆ , from the ith visual vector, xi, 

( ) ( ) ( ) ( )Mxbxbxbbjy iMjijijji ,2,1,0, 21ˆ ++++= K        (3) 

 amount of correlation between the jth element of the audio 
or and the visual vector, x, can finally be determined from 
R-squared term which is defined as, 

( ) ( )

( ) ( )∑
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2

2      (4) 

)  is the mean of the jth element of the audio vector [12]. 

. Estimation of audio features from visual features 

uming correlation exists between audio and visual features, 
 possible to predict the audio feature from the visual feature 
g equation 3. Instead, however, a Gaussian mixture model 
M) is developed to model the joint density of the audio and 



visual feature vector space. A GMM is selected as the model, as 
its individual clusters allow a localized modeling of the joint 
density. First an audio-visual vector, z, is defined, 

[ ]yxz ,=  (5) 

where x is a visual feature vector (AAM, 2-D DCT or cross 
DCT) and y an audio feature vector (MFCCs or formants). From 
a set of audio-visual training data, unsupervised clustering is 
implemented using the expectation-maximisation (EM) 

algorithm to produce a GMM, zΦ , which comprises a set of K 
clusters that localize the correlation between the audio and 
visual vectors in the joint feature space, 

( ) ( )∑
=

=Φ
K

k
kkk f

1
,; zzz Σμzz α    (6) 

Each cluster, or mixture component, is represented by a prior 
probability, αk, and Gaussian probability density function 

(PDF), f, with mean vector, zμ k , and covariance matrix,  zΣk . 

Prediction of the audio vector, iŷ , can be made from a 

visual vector, xi, using the GMM by making a maximum a 
posteriori (MAP) estimate [9], 

⎭
⎬
⎫

⎩
⎨
⎧ ⎟

⎠
⎞⎜

⎝
⎛ Φ= zxyy ,maxargˆ ii

iy
i p   (7) 

Audio feature predictions from each cluster are weighted by the 
posterior probability, hk(xi), of xi belonging to the kth cluster. 
This gives the prediction of the audio feature as, 
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⎠
⎞

⎜
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k
iki h
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1
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where yμk  and xμk are the means of the audio and visual 

vectors in cluster k, while xxΣk  is the covariance of the visual 

vector and yxΣk  is the cross covariance of the audio and visual 

vectors. The posterior probability is given by, 
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where ⎟
⎠
⎞⎜

⎝
⎛ Φxx kip  is the marginal distribution of the visual 

vector for the kth cluster of the GMM. 

5. Experimental results 
The experiments in this section first examine the correlation 
between the audio and visual features. Second, the accuracy of 
predicting formant frequencies from visual features is evaluated. 

The experiments are performed on an audio-visual speech 
database which comprises 277 sentences of continuous speech 
spoken by a single male speaker [13]. Of these, 200 utterances 
were used for training and 77 for testing. The audio data was 
sampled at a rate of 8kHz. The video was originally recorded at 
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frames per second. This was upsampled to 100 frames per 
nd to give a visual frame rate equal to the audio frame rate.  

. Correlation analysis 

 aim of this section is to examine the correlation that exists 
een individual elements of audio features and the three 

erent visual features. The correlation has been measured by 
ling together audio-visual data from all utterances in the 
ing set. Multiple regression has then been applied and the 

quared term computed as described in section 4.1. Figure 2 
ws the multiple correlation (square root of R-squared term) 

FCCs 0 to 12 and log energy with the AAM, 2-D DCT and 
s-DCT features. Similarly, figure 3 shows the multiple 
elation of the four formant frequencies (F1, F2, F3, F4) with 
AAM, 2-D DCT and cross-DCT features. 
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    Figure 2: Multiple correlation coefficients for MFCCs 
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   Figure 3: Multiple correlation coefficients for formants 

 three visual features exhibit very similar levels of correlation 
ither the MFCCs or formants. The AAM feature exhibits 
htly higher correlation to both MFCCs and formants than the 
er visual features. Of the individual audio features shown in 
re 2, MFCC 0 and log energy have highest correlation with 
visual features – giving correlations of R=0.85 and R=0.82
ectively with the AAM features. Higher order MFCCs, such 
FCCs 10, 11 and 12, exhibit much lower correlation with 
visual features. The MFCCs which exhibit highest 

relation with the visual features are based on measurements 
h as energy or the broad spectral structure of the speech 
ch can adequately be observed from the mouth shape 
oded by the visual features. Higher-order MFCCs represent 
r spectral structure which is much more difficult to 
rmine from mouth shape, hence the lower correlation 
es. The visual to formant correlation is considerably lower 
 the visual to MFCC correlation. Of the four formants, F1 

 F2 have highest correlation of R=0.56 while for higher 
uency formants the correlation reduces – to R=0.16 for F4. 

. Formant frequency prediction  

s section presents the result of predicting the formant 
uencies of a frame of speech solely from the AAM visual 
ure representation. Formant frequencies are selected as the 



audio feature for prediction, rather than MFCCs, as they are a 
more intuitive representation of speech which can be visualized 
through spectrogram overlay. AAM features are selected as the 
visual feature due to their higher correlation to audio features.  

The training data utterances have been used to create the 
GMM described in section 4.2, while evaluation of formant 
prediction has been made from the test utterances which 
comprise 24,297 vectors. The accuracy of formant frequency 
prediction is measured by percentage formant frequency 
estimation error, Ep, 

( ) ( )
( ) %100

ˆ

4

11 1

0

4

1
×

−
= ∑ ∑

−

= =

N

i j i

ii
p jF

jFjF

N
E  (10) 

Where ( )jFi  and ( )jFi
ˆ  are the reference and predicted 

frequency of the jth formant at time instant i. Figure 4 shows the 
percentage formant frequency error as the number of clusters in 
the GMM is increased from 1 to 32. 
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Figure 4: Percentage formant frequency error for varying 
numbers of clusters 

As the number of clusters in the GMM is increased up to K=16
the accuracy of formant prediction increases due to more 
accurate modeling of the joint distribution of formants and 
AAM features. Increasing the number of clusters to 32 gives no 
further increase in accuracy. To illustrate the accuracy of 
formant frequency prediction, figure 5 shows a 2 second 
spectrogram of the sentence “Sarah argued that I acted as 
though under his thumb” taken from the test set with predicted 
and reference formants overlaid. 

Figure 5: Spectrogram of utterance “Sarah argued that I 
acted as though under his thumb” showing reference 

formants (dotted line) and predicted formants (solid line). 

The figure illustrates that the predicted F1 contour follows 
closely the reference F1 contour. F2 also follows reasonably 
closely, better than F3, but worse than F1. F4 is considerably 
worse, although this formant is unclear even in the spectrogram. 
The accuracy of the predicted formants follows the trend in 
figure 3 which shows higher correlation for F1 and F2 and 
lower correlation for F3 and particularly for F4.  
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6. Conclusion 
 analysis has shown that correlation exists between audio 

 visual representations of speech. Audio features that 
esent broad spectral shape, such as log energy, MFCCs 0 to 
nd F1 and F2, exhibit higher levels of visual correlation than 
ures representing finer spectral structure. It is also 
resting that all three visual features exhibit very similar 
ls of correlation to the audio features even though their 
hods of computation are very different. Tests to predict 
ant frequencies from AAM features using a GMM showed 

 F1 and F2 could be predicted more accurately than F3 and 
which is consistent with the correlation analysis. These tests 
onstrated that clean spectral envelope information can be 
acted from visual speech features which has importance 
n audio features have been contaminated by noise. The use 
these visually predicted audio features for speech 

ancement is the subject of further work. 
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