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Abstract
For pitch tracking of a single speaker, a common requirement
is to find the optimal path through a set of voiced or voiceless
pitch estimates over a sequence of time frames. Dynamic pro-
gramming (DP) algorithms have been applied before to this prob-
lem. Here, the pitch candidates are provided by a multi-channel
autocorrelation-based estimator, and DP is extended to pitch track-
ing of multiple concurrent speakers. We use the resulting pitch
information to enhance harmonic content in noisy speech and to
obtain separations of target from interfering speech.

Index Terms: speech enhancement, dynamic programming.

1. Introduction
The problem of recognising speech in the presence of stationary
noise or concurrent speech from an interfering speaker, in single-
channel recordings, is addressed in response to a speech separation
challenge [1]. The main contribution here is in pitch tracking of
multiple speakers using dynamic programming (DP). Pitch infor-
mation is used to enhance the harmonic content of a target speaker,
and to suppress interfering speech.

The speech enhancement method begins by applying a pitch
estimator to each time frame of speech, using a sliding-window
across the duration of the utterance. Section 2 describes the multi-
band autocorrelation-based pitch estimator. The pitch estimator
provides a set of pitch candidates in each frame. If successful,
this set contains a candidate close to the correct pitch for frames
in which a speaker is vocalising. To provide robustness when this
is not the case, and to find the optimal path through the set of
pitch candidates over all time frames, a pitch tracking algorithm
is applied, which is described in section 3. The output indicates
whether or not the speaker is voicing in any frame, and for each
voicing region, provides a fundamental frequency (f0) trajectory.
In the final stage, this information is used to enhance/suppress the
harmonic content of a target/interfering speaker, by multiplication
in the spectral domain with a filter containing resonances/nodes
around the harmonics of f0.

Section 4.1 evaluates pitch tracking performance. Sections 4.2
and 4.3 evaluate word recognition rates and describe the enhance-
ment methods for a single speaker in stationary noise, and the two
talker case at various target-to-masker ratios (TMRs), respectively.

2. Pitch estimation
Several existing methods for pitch estimation of speech rely on the
time-domain autocorrelation of the waveform, e.g., YIN [2] and
the software application Praat [3]. Approaches employing filter-
banks as front-ends, often aimed at modelling human audition or
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cal bands, also exist [4, 5]. A multi-band front-end offers
dvantage when multiple periodic sources exist concurrently:
s contain different relative contributions of harmonic energy
each source. The periodicity of a particular source tends to

inate certain bands, so by combining periodicity information
ss bands, it is easier to determine multiple pitch hypotheses
mixture of concurrent speakers.

The front-end for our pitch estimator is a multi-band filter-
constructed from 15 second order IIR filters, with character-

frequencies ranging from 60 to 1000 Hz, and with amplitude
onses shown in fig. 1. The filter-bank was chosen to provide
sonable coverage of this frequency range, and the filter band-
hs were chosen empirically and determined by a single con-
t. The main justification for using this particular filter-bank
that it led to better pitch estimation results than two auditory-
ired filter-banks also tested.

The pitch estimation method used was similar to [3], apart
the multi-band front-end used here, and so only the salient

ts of [3] will be summarised. The output of a filtered band is
ted: x[n], and a windowed segment starting at time n = T is
= x[n + T ]w[n], where w[n] is a Hann window of length L,
0, . . . , L − 1. The autocorrelation of a[n] is:

ra[m] =

L−m−1X
n=0

a[n + m]a[n] (1)

a similar expression exists for the window function, resulting
[m]. The autocorrelation of x[n] is approximately [3]:

rx[m] =
ra[m]

rw[m]
(2)

this is normalised so that rx[0] = 1. Eqn. 2 removes the
ring off of ra[m] at higher lags arising from the finite sum
qn. 1. The window length was chosen to be L = 0.05 fs

ples, where fs is the sample rate. This corresponds to three
ods when f0 is equal to its minimum expected value, set at 60
or speech. The autocorrelation maximum within an expected
e of [fmin

0 fmax
0 ] = [60 320] Hz was found:

s[mmax] = rx[mmax] − α log2

„
fmin
0

mmax

fs

«
. (3)

re the last term above, with α set to 0.01, is a small perturba-
favouring higher frequencies. For a perfectly periodic source,
correlation peaks of unit magnitude exist at lags equal to in-
r multiples of the period, so this term helps to avoid octave
rs by choosing the maximum at the lowest lag. A threshold of
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Figure 1: Filter bank front-end of 2nd-order IIR filters.
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Figure 2: Normalised histogram of the relative change in f0 be-
tween 5 ms frames, summarising speech pitch data in [6].

0.4 was set for s[mmax], below which the band was not consid-
ered to be sufficiently periodic to warrant a pitch candidate. This
threshold provides robustness to noise and the multiple speaker
case, by emphasizing bands in which one periodicity is dominant.

The autocorrelation maxima in all bands were summarised us-
ing an intermediate time-frequency map, E[r, k], where r is the
frame index and k is the frequency bin. Repeating over all bands,
if k is the nearest bin corresponding to lag mmax, then E[r, k] is
incremented by s[mmax]. The bin width of E[r, k], and conse-
quently, the resolution of the final pitch candidates, was 0.5 Hz.
The pitch candidates, f ′

0[r], in each frame were obtained by peak
picking on E[r, k]. The final pitch candidate’s strength s′[r] was
assigned the value of E[r, k] at the peak.

When performing pitch tracking of two speakers, it was found
worthwhile to obtain some additional information from E[r, k].
Suppose a given talker, indexed by j, has an average speaking pitch
of μj , and we assume that the deviation in pitch for this speaker
is approximately Gaussian-distributed around this mean with vari-
ance σ2

j . Then we can formulate a pitch prior for this speaker:

p(f0,j | μj , σj) =
1√

2πσj

exp

„
− (f0,j − μj)

2

2σ2
j

«
. (4)

The estimates of σj and μj for the two speakers where obtained
by least-squares-error minimisation of the difference:˛̨

˛̨̨X
r

E[r, k] −
2X

j=1

ap p(f0,j | μj , σj)

˛̨
˛̨̨

(5)

where the sum in r is over all time frames, and ap reflects the
relative amplitude of speaker j, which is also estimated in the op-
timisation. This is returned to in the next section.

3. Pitch tracking
Given a set of pitch candidates in each frame, the task is to find the
optimal path/s through them over time for one/multiple speakers.
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istical properties of speech would render some paths improb-
, for example, those with large deviations in f0 between con-
tive voiced frames, or rapid switching between voicing and
eless states. Fig. 2 summarises f0 data from a set of manually
scribed speech recordings in the Keele Pitch Database [6], and
stogram is given of the relative change in f0 between consec-
e voiced frames. This is used as a probabilistic measure of f0

ation in the tracking algorithm.
A score function is associated with each path through the pitch
idates, and f ′

0 = 0 is included as a voiceless candidate. Scor-
every possible path through the data would be computation-
infeasible, hence the use of dynamic programming (DP) algo-
s for tracking. This, in its basic form, reduces computational

plexity by iteratively removing suboptimal paths leading up to
e r, and continuing only the remaining tracks to frame r + 1.
tracking algorithm should permit multiple concurrent speakers
interpolation across gaps, as shown in fig. 3. The computa-
al cost associated with each of these will be discussed.
In fig. 3a, there are clearly two possible paths leading to each
e two pitch candidates in frame r − 1. The higher scoring of
of these pairs is carried through to frame r. If frames r − 1

r contain nr−1 and nr pitch candidates, respectively, then the
putational requirement in updating all possible paths to frame
Tr ∝ nr−1nr . In other words, as each candidate in frame
1 can connect to any candidate in frame r, nr−1nr possible
utations exist.

During voicing, a ‘correct’ pitch candidate may be absent in
e frames. To avoid treating these frames as voiceless, and in-
ng the number of voicing transitions, the tracking algorithm is

ed to skip small gaps (see fig. 3b), thus increasing the com-
tional requirement to Tr ∝ (nr−g−1 + . . . + nr−1)nr , where
the maximum allowable gap in frames.
Generalising to the M speaker case, and setting g = 0 for
moment, we firstly define a path as a group of pitch tracks,
for each speaker, and specify that a voiced pitch candidate can
ssigned to at most one speaker. A voiceless pitch candidate
be assigned to any number of speakers. Fig. 3c indicates two

s to frame r from r − 1, and others exist. Not surprisingly,
umber of possible paths increases rapidly with the number of
kers. It can be shown that the computational complexity in
ting paths to frame r increases dramatically to:

Tr ∝ M Qr−1 Qr (6)

re

Qr =

MX
j=0

MCj

jY
k=1

(nr − k)

MCj = M !
j!(M−j)!

. In eqn. 6, the factor M emerges because

score function must be computed for each speaker. Qr is the
ber of possible ways to choose M pitch candidates from nr

idates (the voiceless candidate may be used more than once),
is shown as a function of M and nr in fig. 4. If gaps are al-
d in any speaker’s track, the complexity at frame r increases

again, and the factor corresponding to Qr−1 Qr in eqn. 6 is
ter than (Qr−g−1 + . . . + Qr−1) Qr , as there may be gaps
ome pitch tracks and not in others. Thus, for computational
iency, the DP algorithm was designed to be suboptimal when
M > 1 and g > 0, but optimal in all other cases. In practise,
the score function described below, this sometimes resulted
arginally suboptimal tracks being chosen if a gap occurred
the start of a voiced segment, but otherwise no artifacts were



Figure 3: Paths through pitch candidate sequences, when there are
(a) multiple pitch candidates per frame, (b) gaps allowed between
consecutive candidates, and (c) two speakers.

Figure 4: Qr for M speakers vs. number of pitch candidates nr .

observed. A simple check was used to reduce the overall compu-
tational cost associated with the scoring function: if the frequency
deviation between two consecutive voiced candidates along a path
was larger than 15 Hz, the path was considered physically impos-
sible, and so there was no need for the score to be evaluated.

The DP algorithm can be viewed as optimal only in the sense
of yielding the path with the highest score. The scoring function
reflects the nature of the data and the desired output of the system.
The scoring function, Sj

r , for speaker j at frame r is:

Sj
r =

8>><
>>:

Sj
r′ + Rj ; v → v

Sj
r′ − P ; v → u

Sj
r′ − P + R̂j ; u → v

Sj
r′ ; u → u

(7)

where r − g − 1 ≤ r′ ≤ r − 1 is the frame index of the last pitch
candidate on the pitch track preceding r, v → u denotes a voiced
to voiceless state transition, P (set empirically to 0.2 times the me-
dian of all pitch candidate strengths, s′[r]) is a penalty for voicing
transitions, and Rj is a reward for voiced-voiced transitions:

Rj = s′[r] pδ(δf) aj pf0(f0[r]| μj , σj) pg(r − r′) (8)

where δf = f0[r]−f0[r′]
f0[r]

, pδ(δf) is the histogram of relative fre-

quency variation in fig. 2, and aj and pf0(f0[r]| μj , σj) are the
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ated amplitudes and pitch priors for each speaker determined
ction 2. pg(r − r′) discourages gaps in tracks when it is pos-
to connect two pitch candidates by a track without gaps:

pg(r − r′) =

8<
:

1 ; g = 0

exp

„
−

“
r−r′−1

g

”2
«

; g > 0
. (9)

n eqn. 7 is the reward for starting a new voiced segment:

R̂j = s′[r] pδ(δf) aj pf0(f0[r]| μj , σj) (10)

re δf is the relative frequency difference between f0 and the
voiced pitch candidate (this encourages continuity in f0 across
ecutive voiced segments). The total score for a path is the sum
e scores over all speakers: Sr =

PM
j=1 Sj

r .
In summary, the scoring function favours time continuity of
etween frames and between consecutive voiced segments, it
s to separate tracks for the individual speakers into different
uency regions according to the speaker pitch priors, it tends to
ect pitch candidates with large strengths, and it seeks to find
th with a minimal number of transitions between voiced and
eless states.

4. Results
Pitch tracking

pitch tracking algorithm was evaluated in the single speaker
against a set of reference pitch tracks obtained from speech

laryngograph data of ten speakers [6], upsampled to 200 Hz.
ral different measures of the pitch tracking performance are
n in table 1. Voicing errors (VE) occur where the reference
estimated pitch track disagree on the state of voicing and are
n as a percentage of all frames. Voicing errors consist of false
ms (FA) and false rejects (FR), which occur when the refer-
pitch is voiceless and voiced, respectively. Considering only
es agreed as voiced, gross f0 errors are defined as those where
stimated pitch is closer on a logarithmic scale to half or double
eference pitch than the actual reference pitch. The remaining
es are classified as matched (M), which is reported as a pro-

ion of all voiced frames in the reference. Finally, fine f0 error
sures the RMS frequency difference between reference and es-
ted pitch tracks over all matched frames.

Single-speaker enhancement in noise

atabase of speech data and an associated word recognition
[1] was used to evaluate the proposed enhancement method
peech in stationary noise at various SNRs. Estimated pitch
s were used to extract harmonic content of voiced segments
the original recording, by filtering the original signal using

b-like filters in the spectral domain. The salient points of the
onic filtering approach are as follows [7]. A discrete short-
Fourier transform (STFT) of the speech signal was calculated

g a Hann window of length 2048 samples (82 ms at fs = 25
), with a hop size of 256 samples (10.2 ms). In any frames
e STFT that were considered to be voiced, a binary spectral

k was constructed with ones at integer multiples of f0, and at
neighbouring bins on either side, and zeros elsewhere. The
ry mask was then multiplied by this frame of the STFT, ef-
vely retaining only the harmonic content of this speaker. An
rse overlap-add synthesis method then re-synthesised the vo-
egments of this speaker from the masked STFT representation.



Table 1: Single speaker pitch tracking error measures.
The error measures are defined in section 4.1. (VE - voicing errors,
FA - false alarms, FR - false rejects, M - matched frames)

VE % FA % FR % gross % M % fine (Hz)
7.5 7.4 7.9 0.5 91.6 3.0

Table 2: Word recognition rate (%) for a single speaker in noise.

SNR (dB) clean 6 0 -6 -12
original 98.6 56.7 18.9 11.8 11.7

processed 94.2 72.9 36.7 19.7 11.8

Binary time-frequency masks have been applied before to speech
separation; an early study is given in [8].

Filtering of harmonic content is an effective way to attenuate
noise during voicing, but it is unsuitable for enhancing voiceless
speech content. Hence, a two-fold approach was adopted: har-
monic filtering was used when voicing was detected, and a noise
removal technique using spectral subtraction [9] was used for all
other frames. The spectral subtraction method relies on an estimate
of the stationary noise, which was obtained from a 200 ms sample
where the RMS amplitude of the original signal was at a minimum,
i.e. where it was assumed that the speaker was silent. Table 2 com-
pares the word recognition accuracy for speech within stationary
speech-shaped noise at various SNRs, with and without process-
ing. A default HMM-based recogniser using 39 Mel-frequency
cepstral coefficients (including delta and acceleration coefficients)
[1] was used. Given that the default recogniser [1] was applied
to the processed data without any additional training, we would
expect results to improve with re-training on processed speech.

4.3. Speech enhancement in the two talker case

The two talker problem consists of recognising target speech from
interfering speech at various TMRs. The original mixture was sep-
arated into two speakers, and the RMS energy values of the two
signals were used to measure which was louder. It was then as-
sumed that at positive/negative TMRs the target speech would be
the louder/softer of the two. Pitch tracks were obtained for each
speaker (as in section 3). To enhance the first speaker, the har-
monic content of the second speaker was subtracted from the mix-
ture. Then a two-fold procedure was applied to the residual: in
frames where the first speaker’s voicing was detected, their voice
was extracted by harmonic filtering; and when voicing was unde-
tected, the residual was assigned to the first speaker. The same
procedure was applied to separate the second speaker from the
mix. Previous experiments on duet speech showed that both sup-
pression of the masker’s harmonic contribution by cepstrum filter-
ing, and enhancement of the target speaker by harmonic selection,
aided intelligibility for both normal-hearing and hearing-impaired
listeners [10]. Table 3 gives the word recognition rate using a de-
fault recogniser [1], split into three categories, where the target and
masker are (i) the same (SS), (ii) of the same gender (SG), (iii) of
different genders (DG), and (iv) gives the overall average (AVG).

5. Conclusions
The proposed multi-band autocorrelation pitch estimation algo-
rithm performs comparably with well-known pitch trackers such
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e 3: Word recognition rate (%) for the two speaker separation
lem at various target-to-masker ratios (dB).

MR clean 6 3 0 -3 -6 -9
riginal speech

SS 98.0 62.4 46.2 29.6 18.1 9.7 5.7
SG 99.0 64.3 44.1 33.0 21.0 14.5 7.3
DG 99.2 64.3 46.8 33.5 19.5 11.5 7.5
VG 98.7 63.6 45.8 31.9 19.4 11.8 6.8

rocessed speech

SS 86.2 39.6 26.0 20.1 13.8 8.6 7.9
SG 87.2 42.5 33.5 25.1 16.8 12.9 10.1

G 85.5 48.0 40.0 29.3 17.8 16.3 14.5
VG 86.3 43.3 32.9 24.7 16.0 12.4 10.8

raat [3], in terms of both voicing errors and average accuracy
e detected f0, for the single speaker case. However, unlike the
tracking algorithm in [3], the DP algorithm introduced here

also be used in the multiple speaker case. In the noisy speech
, word recognition rates were generally better than those for
nhanced speech. This was not the case for the two talker task
pt at very low TMRs, although improvements could be ex-
ed for both tasks after re-training on processed data.
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