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Abstract

Autocorrelograms exhibit tree-like structures whose spines are lo-
cated at a delay of 1/F0. This paper exploits the dendritic auto-
correlogram structure for the identification of spectro-temporal re-
gions dominated by a single periodic sound source in monaural
acoustic mixtures. Each frame of the mixture is first segmented
into different sound sources in the autocorrelogram domain. Lo-
cal pitch estimates are formed for each source and used as a cue
for temporal integration. A confidence score is computed for each
time-frequency pixel in the grouped regions to determine its prob-
ability of belonging to the group. The system is evaluated using si-
multaneous speech in a coherence measuring experiment and also
employed within an ASR system where it produces improved re-
sults for the Interspeech 2006 Speech Separation Challenge.

Index Terms: speech separation, correlogram, multipitch track-
ing.

1. Introduction
In realistic listening conditions speech is often corrupted by other
sound sources. Many systems have been proposed to separate
noise from the speech (e.g. blind source separation based meth-
ods), but they often fail on single-channel signals. However, hu-
man listeners are adept at extracting target sound sources from
monaural acoustic mixtures. It is believed that there are processes
in the auditory system that segregate the acoustic evidence into
streams based on their characteristics. This ability has motivated
extensive research into the perceptual segregation of sound and
has resulted in much theoretical and experimental work in audi-
tory scene analysis (ASA) [1].

Several models have been proposed to separate simultaneous
sounds using the autocorrelogram (ACG) in which the periodicity
of sound is well represented (e.g. [2, 3]). The autocorrelogram (or
correlogram) is a 3-D volumetric function mapping a frequency
channel of a periphery model, temporal autocorrelation delay, and
time to the amount of periodic energy in that channel at that de-
lay and time. Most methods have been based on inspection of a
‘pooled’ (or summary) correlogram obtained by summing the cor-
relogram across all frequency channels. It is believed that the po-
sition of the strongest peak in the pooled ACG corresponds to the
fundamental frequency (F0) of the strongest sound source which
dominates the energy in those channels that respond to this F0.
Once those channels are removed the strongest peak in the residue
suggests the F0 of a second (and weaker) source. One limitation
of these methods is that locating peaks in the pooled ACG is often
difficult when speech is corrupted by competing sounds. Another
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tation is that thy cannot account for the effect that the chan-
dominated by the weaker source may also respond to the F0
he stronger source, e.g. when the weaker sound has twice the
of the stronger sound; thus all channels will be assigned to
source. There are also methods which make use of the entire
elogram for sound source separation. Summerfield et.al. [4]
ussed a convolution-based strategy for separating simple syn-
ised vowels with F0 not harmonically related in the correlo-
. By locating a tree-like structure in the correlogram, they
onstrated that multiple fundamentals can be recognised.

The paper presents a sound source separation system which
loits the ‘dendritic structure’ in the correlogram to identify
tro-temporal regions dominated by a single periodic sound
rce (referred to as ‘coherent fragments’ in this work) in a
aural acoustic mixture. The ‘dendrites’ are tree-like structures
se stems, or ‘spines’ are centred on the delay of multiple pitch
ods across frequency channels in a correlogram (see Fig. 1).
system operates by first identifying the dendritic structures
segregating each 10 ms frame of the mixture into different
nd sources in the correlogram domain. Local pitch estimates
then formed for each source after the segmentation and used
ues for temporal grouping. This process results in the spectro-
poral representation of speech mixtures being separated into a
of coherent fragments.

We evaluated the system using a small vocabulary simultane-
speech separation task. A coherence measuring experiment
performed to validate the quality of the fragments generated.
tion 2 describes the techniques used in coherent fragments gen-
ion. Section 3 introduces a confidence score for each spectro-
poral pixel in a fragment, which represents the probability of
pixel belonging to the fragment. In section 4 we evaluate the
em and discuss the experimental results. Section 5 concludes
presents future research directions.

2. Coherent Fragment Generation

Overview

summary correlogram is not the only way to extract the pitch
od. For periodic sounds all autocorrelation channels respond
he fundamental frequency forming a vertical spine in the cor-
gram which is centred on the delay corresponding to the pitch
od. Meanwhile, because the channels also actively respond
he harmonics closest to their centre frequencies (CF), the fil-
d signal in each channel tends to repeat itself at intervals of
roximately 1/CF, giving a succession of peaks at the frequency
ts CF in the correlogram. This demonstrates a symmetric tree-
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Figure 1: (A) Correlogram of a male/female speech mixture. (B)
The summary of all ACG channels. (C) The summary of the chan-
nels dominated by male speech source. (D) The summary of the
channels dominated by female speech.

like structure centred on the delay of multiple pitch periods in
the correlogram, which we refer to as the ‘dendritic structure’(see
Fig. 1(A)). When only one harmonic source is present, the spine
of the dendritic structure is displayed coherently across the entire
frequency range. When two (or more) periodic sound sources are
present, there may be gaps on a spine as some channels form a
spine on the delay of the pitch period of the other source. These
cues are employed in this study to separate sound sources.

The correlogram is generated by passing acoustic signals
through a 64-channel overlapping gammatone filter bank dis-
tributed in their centre frequencies (CF) between 50Hz and
8000Hz on the equivalent rectangular bandwidth (ERB) scale [6].
They are then half-wave rectified and short-time autocorrelation is
computed on the output of each filter using a 30ms Hanning win-
dow, with a frame shift of 10 ms. This process produces a 2-D
correlogram for each frame. Fig. 1(A) illustrates the correlogram
of a male/female speech mixture. It has been normalised and plot-
ted as an image for illustration. The pitch periods of the male and
female speech are 7.8 ms and 3.9 ms, respectively. The pooled
correlogram is displayed in Fig. 1(B). The strongest peak in the
summary is on the delay of 7.8 ms which is the pitch period of
male speech and all the channels respond to the peak as the female
pitch period is half of the male pitch period. When only looking
at the strongest peak in the summary all channels may be grouped
together.

It is visually clear that there are three dendritic structures in
the correlogram centred on the delay of multiple periods of 3.9
ms. This is a strong indication that there is a sound source with a
pitch period of 3.9 ms. There are, however, gaps on the spine of the
left-most structure, around CF of 100 Hz and 395 Hz, suggesting
that some channels belong to another source. These channels are
actually dominated by the male speech. Fig. 1(C,D) display the
summary of channels dominated by male speech only and female
speech only, respectively. If we can locate the left-most dendritic
structure the task of separation here is much easier.

2.2. Locating the dendritic structure

The strategy explored here is derived from work reported by
Summerfield et.al [4]. The correlogram is convolved with a
two-dimensional operator which consists of five sinusoids, each
weighted by a Gaussian (i.e. five Gabor functions). The Gabor
function is defined as:

g(x;T, σ) = e−x2/2σ2

cos(2πx/T ) (1)
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After 2−D convolution with the Gabor functions
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re 2: (A) Correlogram of a male/female speech mixture. (B)
convolution result of the correlogram with Gabor functions.
Gabor functions for a particular channel. (D)-(F) Summary
ll channels and those dominated by male and female speech
rce, respectively.

re 1/T is the frequency of the sinusoid and σ is the standard
iation of the Gaussian. The frequency of each sinusoid used by
merfield et.al is the CF of the channel with which it is aligned,
the standard deviation of the Gaussian is 1/CF. This works
l with the synthesised vowels used by them. However, speech
als are only quasi-periodic and filter channels only respond to
rticular frequency component close to its CF. This means the
ating frequency of the filtered signal in each channel is often
its CF and sometimes the shift is significant. Therefore we
sure the actual repeating period pi in each channel i. This is
e by locating the first valley (vi), the first and second peaks
and p′′

i ) of the correlation function in a channel. The actual
ating period pi is approximated as:

pi =
2vi + p′

i + p′′

i /2

3
(2)

use pi/2 as the standard deviation of the Gaussian. These
nges have been very effective for realistic speech signals.
The operator approximates the local shape of the dendritic
cture at the channel with which the middle Gabor is aligned
Fig. 2(C)). For each channel c, a 2-D convolution of its op-
or and corresponding sub-band correlogram (five channels) is
ormed:

i, τ )⊗ g(x;pi, pi/2) for c−2 ≤ i ≤ c+2, 1 ≤ τ ≤ L (3)

re A(i, τ ) is the autocorrelation function and L is the maxi-
autocorrelation delay. The central part of the convolution is
d as the result of channel c. When the operator is aligned with
spine of a dendrite, the 2-D convolution gives a large prod-
and the product is smaller if misaligned. To remove ripples
uced when the cosine operator is aligned with other peaks
er than a spine, we also convolve the correlogram with an op-
or composed of sine functions [4]. At each point the results
he two convolutions are squared and summed, and the rela-
ship sin2 +cos2 = 1 ensures a smooth function with peaks
ted on the spines of the dendritic structure. The final result
hese 2-D convolutions is a simplified correlogram in which the



spines of dendritic structures are greatly enhanced, as illustrated
in Fig. 2(B). The two white vertical lines (one around 4ms and the
other around 9ms) are the spines of major dendritic structures in
the correlogram.

A simple peak-picker selects the strongest peak in each chan-
nel. A histogram of the delay periods is computed and the two
periods with most counts are selected as the locations of two den-
drites. We also make sure that each dendritic structure identified is
across a minimum number of channels (4 channels in this study).
When the two dendrites are harmonically related (e.g. one pitch
period is half of the period of the other one) the one with longer
pitch period is removed. Here we assume the maximum number
of periodic sources in each frame is two, but this technique can be
easily extended to handle more sources.

2.3. Grouping channels across frequency

Once the dendritic structures are found, the correlogram is natu-
rally separated into two sources by grouping channels associated
with each spine. However, it is possible that some channels remain
isolated. This happens when the energy in a channel is equally
dominated by both sources. We assign each isolated channel to
a source if it more closely matches the periodicity of that chan-
nel. When only one dendritic structure is identified in the correlo-
gram, an isolated channel is only assigned to the source if its period
matches within 5% of the source pitch period. In this case the re-
maining channels are grouped together. Fig. 2(E) and (F) show the
summaries of grouped correlogram channels after the separation.
The F0 peak is very clear in each summary, while locating them is
more difficult in the pooled correlogram (Fig. 2(D)).

2.4. Temporal integration

After grouping frequency channels in each frame, segmentations
are integrated across time to form coherent fragments. The
stronger source can swap from frame to frame as speech energy
varies over time. We use pitch continuity as a cue for integra-
tion [1]. At each frame local pitch estimates are formed by sum-
ming the ACG channels of each source. For the stronger source
only the highest peak is picked. For the weaker source (if there
is one) up to two peaks are picked. Fig 3(C) shows the pitch esti-
mates for a female(target)/male(masker) speech mixture. The dots
represent the pitch of the stronger source at each frame and the
crosses represent the weaker source. It can be seen that the sources
swap position across time.
The pitch estimates are then passed to a multipitch tracker to

form smooth tracks. The tracker models the pitch of each source
as an HMM with one voiced state and an unvoiced one [7]. The
smooth pitch tracks are displayed as circles in Fig 3(D), while the
ground-truth pitch tracks on the pre-mix clean signals (using the
‘Praat’ package) are displayed as solid lines. Our system correctly
tracks most pitch points. Segmentations with a same pitch track
are given a same label. Fig 3(E) shows the final formed fragments,
each of which is represented using a different shade of grey. The
target-to-masker ratio (TMR) here is 0dB.

2.5. Adding inharmonic fragments

The missing pixels in Fig 3(E) are either low energy regions or
inharmonic regions which the proposed system currently does not
handle. There are no dendritic structures in a correlogram if the
frame is dominated by inharmonic sound. Following [8] we em-
ploy the Watershed algorithm to process the spectrogram as an im-
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after the harmonic regions are removed. The inharmonic frag-
ts are then combined with harmonic fragments (Fig. 3(F)).

3. Confidence Measures
flaw in this system is that the fragment labelling is dis-
e. This means that each spectro-temporal pixel in a fragment
eated either wholly missing or wholly present. To ‘soften’ the
rete decision, for each pixel we introduce as a confidence score
robability of belonging to the fragment. This produces a soft
k

The difference between the period of each corresponding ACG
nnel and the global pitch period measured for that fragment at
time is computed and converted into a score between 0.5 and
ing a sigmoid function. Channels with a period fully aligned
the pitch period are given a value close to 1; a value close
.5 if fully misaligned. Confidence scores for the inharmonic
ments in our study are all set to 1. These confidence scores
‘soft’ masks) are employed along with the discrete fragments
e ‘speech fragment decoding’ system [5]. They are also used
ur coherence evaluation experiment.

50Hz

8KHz

50Hz

8KHz

00Hz

00Hz

00Hz

00Hz

00Hz

00Hz

50Hz

8KHz

50Hz

8KHz

re 3: (A) A ‘ratemap’ representation of the mixture of ‘lay
te with j 2 now’ (target, female) plus ‘lay green with e 7 soon’
sker, male) TMR = 0dB. (B) The ‘oracle’ segmentation: dark
: the value in the mixture is close to that in the female speech;
t grey: the mixture value is close to that in the male speech. (C)
h estimates for each source segmentation. Dots represent the
h of the stronger source of each frame and crosses represent the
ker source of that frame. (D) Circles are pitch tracks produced
he multipitch tracking algorithm; solid lines are the ground-
h pitch tracks. (E) Fragments after temporal integration based
he smooth pitch tracks. (F) Combining inharmonic fragments.



4. Experiments and Results
4.1. Coherence measuring

A natural criterion for evaluating the quality of fragments is to
measure their coherence. The coherence of a fragment is referred
to as its consistency with a single source. If each pixel is associated
with a weight w, we define the coherence as:

100 ×

P
w1P

w1 +
P

w2

(4)

where w1 are a set of weights for pixels in the fragment overlap-
ping the majority source and w2 are a set of weights for those
which overlap the minority source. In this study we use the confi-
dence scores described in Sec. 3 as the weights. The fragments are
compared with the ‘oracle’ segmentation obtained from pre-mix
signals. Note that small fragments are less likely to have pixels
that belong to different sources than large fragments. To reduce
the effect of small fragments contributing high coherence to the
overall scores, we did not include fragments with less than 20 pix-
els. The average coherence of these small fragments is higher than
82%.

Table 1: Average sizes of fragments with different coherence

coherence lower than 80% higher than 80%

Proposed system 209 pixels 285 pixels

Previous system 348 pixels 311 pixels

4.2. Results and discussion

The experiment was performed using simultaneous speech con-
structed from the Grid corpus [9]. The test set consists of 600 pairs
of endpointed utterances by 34 speakers that have been artificially
added together at a range of TMRs; 200 pairs in which target and
masker are the same speaker, 200 pairs of the same gender (but
different speakers), and 200 pairs of mixed gender.
The histograms of coherence scores of fragments generated by

the proposed system and the system reported in [8] are displayed
in Fig 4. They have been normalised by dividing the counts in the
bins by the total number of fragments. It shows that the coherence
of fragments generated by the system reported here is significantly
higher than the previous system throughout different conditions.
To examine the effect of fragment sizes on the fragment coher-
ence, we also measured the average size of fragments with coher-
ence lower and higher than 80% (Tab. 1). The sizes of fragments
whose coherence is higher than 80% are not significantly different
in both systems while the proposed system produces smaller frag-
ments with low coherence. This is acceptable as it also produces
proportionally less fragments with low coherence. The aim is to
produce more large fragments with high coherence.
The technique proposed here was also employed within the

ASR system reported in [5], producing improved results for the
Interspeech 2006 Speech Separation Challenge1.

5. Conclusions
This paper presents a novel approach which exploits the den-
dritic structure in correlograms to identify spectro-temporal re-
gions dominated by a single sound source in monaural acoustic

1http://www.dcs.shef.ac.uk/∼martin/SpeechSeparationChallenge.htm
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re 4: Histograms of fragments coherence scores after normal-
ion (TMR = 0dB). The top three are for fragments generated
he proposed system while the bottom three are for fragments
erated by the system reported in [8].

tures. The fragments generated in this way are more coherent
a previous method. Future work includes comparing correl-
ms across time to produce better segmentation. We will also
stigate a more robust multipitch tracker.
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