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Abstract
We present a simple yet effective algorithm for noise reduction of
speech signals using a lattice LP filter. Based on previous inves-
tigations and a theoretical analysis of the lattice filter parameter
estimation we introduce an improved parameter estimation algo-
rithm that takes into account the non-stationary nature of speech
and expected noise signals, yielding a good suppression of station-
ary and slowly time-varying noise. The algorithm has zero delay
for the speech signal, promoting its application for telephony or
hearing aids. No additional or explicit noise estimation algorithm
is needed.
Index Terms: noise reduction, speech recognition.

1. Introduction
Noise reduction for speech signals is a task becoming more and
more important in telephony, for automatic speech recognition,
but also for applications, like, e. g., digital hearing aids. The chal-
lenges we are facing are non-white, non-stationary or highly im-
pulsive noise.

Linear prediction (LP) [1] is an important tool for speech pro-
cessing and is applied in numerous applications for speech trans-
mission, analysis, recognition, and synthesis. The implementation
of LP filters can be of direct form, or using a lattice structure [2, 3],
which have been used for noise reduction, e. g., in [4, 5].

In this paper we present a lattice filter LP predictor and its ap-
plication to noise reduction, starting with a short review of linear
prediction and the lattice filter in sect. 2, the principle of its appli-
cation to noise reduction in sect. 3, and a motivation of the correc-
tions to the standard parameter estimation method based on esti-
mates of the reflection coefficients from a noisy signal in sect. 4.
The proposed algorithm is presented , with examples for the de-
noising of speech signals, in sect. 5, and we finish with conclusions
and outlook.

2. Linear prediction and lattice filter
Linear prediction is commonly applied to a speech signal x(n),
e. g., to reduce the variance of a speech signal for transmission,
by using a low-order, slowly time-varying finite impulse response
filter to predict a signal sample:

x̂(n) =

MX

i=1

bi(n) x(n − i) . (1)

Here, M is the order of the LP filter, and bi(n) are the filter co-
efficients, which are estimated based on the signal properties and
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ted on a frame-wise basis, e. g., each 10 ms. Algorithms di-
y providing coefficients bi(n) for the direct form FIR filter in
re the so-called “auto-correlation method” or the “covariance
od.” LP for speech signals frequently uses a low filter order
= 10 . . . 20, depending on the sampling rate) to model the
tral envelope.

An prediction filter equivalent to the direct form filter is the
ce filter [2, 3], which has a direct relation to a physical model
e vocal tract [1]. The lattice prediction filter operation is char-
rized by the equations

f0(n) = b0(n) = x(n) ,

fm(n) = fm−1(n) + km(n) bm−1(n − 1) , (2)

bm(n) = bm−1(n − 1) + km(n) fm−1(n) , (3)

uated at each time n for all lattice stages m = 1 . . . M . fm(n)
bm(n) are the forward and backward error in stage m at time
espectively, and km(n) are the reflection coefficients of the
ce filter (in a more general formulation of the lattice filter the
ction coefficients in (2) and (3) are individual different param-
, however, we will use the formulation with equal ‘forward’
‘backward’ reflection coefficients here). A schematic of this
ce filter is given in fig. 1.

The forward error at stage M is the prediction error signal of
attice LP filter:

fM (n) = e(n) = x(n) − x̂(n) . (4)

Optimal reflection coefficients km for minimizing the mean
red prediction error of an undistorted signal are found by

km(n) = −
rm−1(n)

qm−1(n)
, (5)

the expected values for the forward and backward error cor-
ion and power

rm(n) = E{fm(n) bm(n − 1)} , (6)

qm(n) =
1

2
E{f2

m(n) + b
2

m(n − 1)} . (7)

monly, the expectation operators E in (6) and (7) are evalu-
using low-pass filtered instantaneous values of fm(n) bm(n−
nd f2

m(n) + b2

m(n − 1), respectively, for example using
pole recursive low-pass filters (lossy integration, cf. sect. 5).
ce, the adaption of the lattice filter to model the slowly time-
ing input speech signal is done by evaluating (6), (7), and (5)
ach time n after filter operation, (2) and (3) – as opposed to
rame-wise coefficient update of the direct form LP filter in (1).
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3. Noise reduction
For the noise reduction task we consider an observed signal y(n)
originating from a linear additive noise model

y(n) = x(n) + ε(n) , (8)

with the speech signal component x(n) and an additive back-
ground noise component ε(n). The task of noise reduction is to
provide a good estimate for the speech signal component x(n).
In the single-channel setting considered here (and for the SNOW
project), this estimate is based on the noisy signal observation y(n)
only and does not make use of additional information (like, e. g.,
a second signal from a microphone recording only background
noise).

Reduction of background noise in speech signals using linear
prediction filtering can be based on the assumption that the speech
signal component is well predicted whereas the noise component
is not. Thus, the predicted signal x̂(n) may be taken as an estimate
for the speech component. While for the direct form prediction fil-
ter in (1) the output is the predicted signal immediately, for the lat-
tice filter, x̂(n) is computed effectively as the difference between
input signal and output of the forward prediction path:

x̂(n) = y(n) − e(n) (9)

for the speech component estimate, with e(n) = fM (n), cf. (4).
In the application of a lattice LP filter to noise reduction in

[4]—where a high order filter (N = 256) is used to enable the
modeling of the spectral fine structure of speech—it is observed
that rm(n) exhibits a large variance due to the noise signal com-
ponent in the higher filter stages. It is suggested to reduce the
according variance of the reflection coefficients by using a fixed
(large) value for the power estimates qm(n) = G. The reduction
of the magnitude of reflection coefficients, or the reduction of the
radii of zeros of the LP filter transfer function, has been proposed
also for other purposes, like, e. g., better modeling of the spectral
envelope or more accurate formant estimation.

In the next section we will motivate a reduction of the mag-
nitude of the reflection coefficients by the derivation of minimum
mean-square error estimators for rm and qm.

4. Estimator for reflection coefficients from
the noisy signals

For the computation of reflection coefficients for the lattice filter,
or of the partial correlations (PARCORs), which are equal to −km,
based on estimates from a noisy signal, we assume whiteness for
the additive noise signal ε(n) ∈ N (0, σ2

n), which should also be
uncorrelated with x(n). This constitutes the least informed (max-
imum entropy) model.
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We are aware that this assumption is not realistic for environ-
tal noise in general.However, as we will show, it gives evi-
e of the need for a correction of the reflection coefficients.

The estimates for correlation (6) and power (7) for the com-
tion of the reflection coefficients in (5) are now based on the
y observed signal y(n), and we will show the need for a cor-

ive term to yield estimates for reflection coefficients k̂m related
e noise-free signal x(n).

In particular, for the estimation of the reflection coefficient in
first filter stage m = 1, we get the following expectation for

r0 = E{f0(n) b0(n − 1)}

= E{y(n) y(n − 1)}

= E{(x(n) + ε(n))(x(n − 1) + ε(n − 1))}

= E{x(n) x(n − 1)} . (10)

For the error power estimate q0 in the first filter stage we get

0 =
1

2
E{f2

0 (n) + b
2

0(n − 1)}

=
1

2
E{y2(n) + y

2(n − 1)}

=
1

2
E{(x(n) + ε(n))2 + (x(n − 1) + ε(n − 1))2}

=
1

2
E{x2(n) + x

2(n − 1)} + σ
2

n . (11)

resulting error in the values of the reflection coefficients is
cted in fig. 2,

Thus, to come up with reflection coefficients related to the
e-free signal x(n), the correlation estimate from the noisy ob-
ation can be used unchanged r̂0 = r0, whereas the error power

ate has to be corrected as

q̂0 = q0 − σ
2

n , (12)

the corrected reflection coefficient is computed as

k̂1 = −
r̂0

q̂0

= −
r0

q0 − σ2
n

. (13)

Introducing γ = E{y2}

σ2
n

(where γ − 1 =
E{y2}−σ2

n

σ2
n

is the a

eriori SNR), and noting that q0 = 1

2
E{f2

0 (n)+ b2

0(n−1)} =
2}, we can rewrite this equation to

k̂1 = −
1

1 −
σ2

n

q0

r0

q0

=
1

1 − 1

γ

k1 . (14)
kM

kM

bM−1(n)

fM−1(n)

k2

b1(n)

f1(n)

k1

k1

b0(n)

f0(n) fM (n) = e(n)

bM (n)

x(n)

k2

z−1 z−1 z−1

Figure 1: Lattice filter
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Figure 2: Values of the reflection coefficient k1 as computed from
the noisy signal without correction as a function of a priori SNR
for different values of the auto-correlation ρxx(1) of the noise-free
signal x(n)

This means a scaling of the reflection coefficient k1 as originally
computed for the distorted signal y(n) using (5), (6), and (7) by a
factor 1

1− 1

γ

.

Equation (14) can be generalized for the higher lattice stages
m = 2, 3, . . ., which yields a recursive correction of the reflection

coefficients k̂m. In our experiments directly applying the correc-
tions deduced above, however, severe problems (like intermediate
instabilities of the resulting LP analysis (!) filter) have been ob-
served1.

Nevertheless, from the above we can infer that a modifica-
tion of reflection coefficients in magnitude, i. e., a modification
of the ratio between correlation and power estimate is beneficial
for the prediction of a signal x(n) when observing a signal y(n)
containing additive noise. Finding the correction terms, however,
relies on good estimates for the signal and noise power, σ2

x and
σ2

n, respectively. Furthermore, the model up to now does not take
into account any knowledge about properties of speech and of the
expected noise signal. We will now present a method to yield a
correction of reflection coefficients based on simple assumptions
about the variation of the correlation and power of the speech and
noise signals over time.

5. Correlation and power estimates for
non-stationary noisy signals

As noted above, the estimates for error correlation (6) and error
variance (7) are commonly based on low-pass filtering of the in-
stantaneous values. Often one-pole low-pass filtering (lossy inte-
gration) is used:

r̃m(n) = λr r̃m(n − 1) + fm(n) bm(n − 1) , (15)

q̃m(n) = λq q̃m(n − 1) +
1

2
(f2

m(n) + b
2

m(n − 1)) ,(16)

1We used simple signal and noise estimates based on q0(n) and its
minimum statistics, respectively, or a noise estimation from e(n), which,
however, forms a feedback system. Instabilities were observed in both
cases.
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the same poles (forgetting factors) λr = λq for both correla-
and power estimate.
Our proposal is to allow for different pole positions λq ≥ λr .
resulting filter transfer functions

Hr(z) =
1

1 − λrz−1
, Hq(z) =

1

1 − λqz−1
(17)

λr = 0.99608 and λq = 0.99843 and a sampling rate of
Hz are depicted in fig. 3 (a). As can be seen the ratio of r̃m(n)
q̃m(n) will be influenced less for low frequencies, i. e., for
ly varying correlation and power, whereas for faster variations
ve ≈ 10 Hz) the ratio is unchanged as compared to estimates
λr = λq . Under the assumption that these parameters vary
r for the speech signal (considering, e. g., a phoneme rate of
er second) than for the noise signal (stationary or slowly time
ing noise), the resulting lattice prediction filter will predict the
ch signal component well, whereas the noise component is
ressed.
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re 3: Frequency characteristic of the low-pass filters for er-
correlation Hr(z) (solid lines) and variance Hq(z) (dashed
), for (a) two one-pole low-pass filters with λr = 0.99608
λq = 0.99843, (b) a one-pole low-pass for the power estimate
) with λq = 0.99843, and a two pole low-pass for the corre-
n estimate r̃(n) with λr1 = 0.99608 and λr2 = 0.9. The
er the distance between the two transfer functions the more
e suppression occurs.

To address impulse noise, we propose to reduce the ratio be-
n correlation and power estimate also for high frequencies,
h can be done by applying a second pole in the low-pass filter

he correlation Hr(z). An according example transfer function
picted in fig. 3 (b).
The LP filter order M necessary to achieve good noise reduc-
may be chosen astonishingly low, even lower than the order
monly used for modeling the spectral envelope of speech sig-
. For the example in fig. 4 a predictor with order M = 10
used for a signal with a sampling rate of 16 kHz. This exam-

contains several occurrences of strongly non-stationary noise
ts, which are well removed by our algorithm. The signal is
xample recording for the European project SNOW (Services
Omadic Workers)—in the scope of which this algorithm has
developed—from a factory floor environment, i. e., an ad-

e acoustical environment.
First informal tests of this algorithm in combination with and
replacement for the ETSI advanced front-end [9] in the scope

utomatic speech recognition show encouraging results, the op-
zation of parameters and detailed tests, however, still have to
erformed.
Computational complexity of the proposed algorithm depend
ctly on the filter order chosen, and for larger filter order may
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Figure 4: Example for the denoising of a wide-band speech signal

exceed the computational complexity of other (e. g., FFT-based)
noise reduction methods, due to the sample-wise processing and
parameter update. Note, however, that the sample-wise processing
of our algorithm enables the implementation of noise reduction
without delay of the speech signal, which is a benefit, e. g., for the
application in hearing aids.

6. Conclusions and outlook
A simple yet effective algorithm for noise reduction of speech sig-
nals using a lattice LP filter has been presented, motivated by the
derivation of estimates for the error correlation and power in the
lattice filter. In addition, we consider the specific properties of
time-variations in speech signals and the expected additive noise.
The resulting algorithm is well suited for the removal of stationary
and slowly time-varying noise. For the application of this algo-
rithm no noise estimation is required. The algorithm has zero de-
lay of the processed signal, making it applicable for delay-critical
noise reduction tasks, such as in hearing aids.

Further investigations will tackle the optimization and testing
for the application with automatic speech recognition systems, the
promotion of impulse noise suppression capabilities—which are
not yet sufficient for the targeted factory floor environment—, as
well as the test and optimization for human perception.
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