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Abstract
We apply machine learning techniques to the problem of separat-
ing multiple speech sources from a single microphone recording.
The method of choice is a sparse non-negative matrix factorization
algorithm, which in an unsupervised manner can learn sparse rep-
resentations of the data. This is applied to the learning of person-
alized dictionaries from a speech corpus, which in turn are used
to separate the audio stream into its components. We show that
computational savings can be achieved by segmenting the training
data on a phoneme level. To split the data, a conventional speech
recognizer is used. The performance of the unsupervised and su-
pervised adaptation schemes result in significant improvements in
terms of the target-to-masker ratio.
Index Terms: Single-channel source separation, sparse non-
negative matrix factorization.

1. Introduction
A general problem in many applications is that of extracting the
underlying sources from a mixture. A classical example is the so-
called cocktail-party problem in which the problem is to recognize
or isolate what is being said by an individual speaker in a mix-
ture of speech from various speakers. A particular difficult version
of the cocktail-party problem occurs when only a single-channel
recording is available, yet the human auditory system solves this
problem for us. Despite its obvious possible applications in, e.g.,
hearing aids or as a preprocessor to a speech recognition system,
no machine has been built, which solves this problem in general.

Within the signal processing and machine learning communi-
ties, the single channel separation problem has been studied exten-
sively, and different parametric and non-parametric signal models
have been proposed.

Hidden Markov models (HMM) are quite powerful for mod-
elling a single speaker. It has been suggested by Roweis [1] to use
a factorial HMM to separate mixed speech. Another suggestion
by Roweis is to use a factorial-max vector quantizer [2]. Jang and
Lee [3] use independent component analysis (ICA) to learn a dic-
tionary for sparse encoding [4], which optimizes an independence
measure across the encoding of the different sources. Pearlmutter
and Olsson [5] generalize these results to overcomplete dictionar-
ies, where the number of dictionary elements is allowed to exceed
the dimensionality of the data. Other methods learn spectral dic-
tionaries based on different types of non-negative matrix factoriza-
tion (NMF) [6]. One idea is to assume a convolutive sum mixture,
allowing the basis functions to capture time-frequency structures
[7, 8].

A number researchers have taken ideas from the computa-
tional auditory scene analysis (CASA) literature, trying to incorpo-
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various grouping cues of the human auditory system in speech
ration algorithms [9, 10]. In the work by Ellis and Weiss [11]
ful consideration is given to the representation of the audio sig-
so that the perceived quality of the separation is maximized.
In this work we propose to use the sparse non-negative ma-
factorization (SNMF) [12] as a computationally attractive ap-
ch to sparse encoding separation. As a first step, overcom-
dictionaries are estimated for different speakers to give sparse

esentations of the signals. Separation of the source signals is
eved by merging the dictionaries pertaining to the sources in
mixture and then computing the sparse decomposition. We
ore the significance of the degree of sparseness and the num-
of dictionary elements. We then compare the basic unsuper-
d SNMF with a supervised application of the same algorithm
hich the training data is split into phoneme-level subproblems,
ing to considerable computational savings.

2. Method

e following, we consider modelling a magnitude spectrogram
esentation of a mixed speech signal. We represent the speech
al in the non-negative Mel spectrum magnitude domain, as
ested by Ellis and Weiss [11]. Here we posit that the spec-

ram can be sparsely represented in an overcomplete basis,

Y = DH (1)

is, each data point held in the columns of Y is a linear combi-
n of few columns of D. The dictionary, D, can hold arbitrar-
any columns, and the code matrix, H, is sparse. Furthermore,
ssume that the mixture signal is a sum of R source signals

Y =
R

i

Yi.

basis of the mixture signal is then the concatenation of the
ce dictionaries, D = [D1 . . .Di . . .DR], and the complete

matrix is the concatenation of the source-individual codes,
H�

1 . . .H�
i . . .H�

R
�

. By enforcing the sparsity of the
matrix, H, it is possible to separate Y into its sources if the

onaries are diverse enough.
As a consequence of the above, two connected tasks have to
olved: 1) the learning of source-specific dictionaries that yield
se codes, and, 2) the computing of sparse decompositions for
ration. We will use the sparse non-negative matrix factoriza-
method proposed by Eggert and Körner [12] for both tasks.
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2.1. Sparse Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) computes the decom-
position in Equation (1) subject to the constraints that all matri-
ces are non-negative, leading to solutions that are parts-based or
sparse [6]. However, the basic NMF does not provide a well-
defined solution in the case of overcomplete dictionaries, when
the non-negativity constraints are not sufficient to obtain a sparse
solution. The sparse non-negative matrix factorization (SNMF)
optimizes the cost function

E = ||Y − D̄H||2F + λ
ij

Hij s.t. D,H ≥ 0 (2)

where D̄ is the column-wise normalized dictionary matrix. This
cost function is the basic NMF quadratic cost augmented by an
L1 norm penalty term on the coefficients in the code matrix. The
parameter, λ, controls the degree of sparsity. Any method that
optimizes Equation (2) can be regarded as computing a maximum
posterior (MAP) estimate given a Gaussian likelihood function and
a one-sided exponential prior distribution over H. The SNMF can
be computed by alternating updates of D and H by the following
rules [12]

Hij ← Hij •
Y�

i D̄j

R�
i D̄j + λ

Dj ← Dj •
i Hij Yi + (R�

i D̄j)D̄j

i Hij Ri + (V�
i D̄j)D̄j

where R = DH, and the bold operators indicate pointwise multi-
plication and division.

We first apply SNMF to learn dictionaries of individual speak-
ers. To separate speech mixtures we keep the dictionary fixed and
update only the code matrix, H. The speech is then separated by
computing the reconstruction of the parts of the sparse decompo-
sition pertaining to each of the used dictionaries.

2.2. Two Ways to Learn Sparse Dictionaries

We study two approaches to learning sparse dictionaries, see Fig-
ure 1. The first is a direct, unsupervised approach where the dic-
tionary is learned by computing the SNMF on a large training data
set of a single speaker. The second approach is to first segment
the training data according to phoneme labels obtained by speech
recognition software based on a hidden Markov model. Then, a
sparse dictionary is learned for each phoneme and the final dic-
tionary is constructed by concatenating the individual phoneme
dictionaries. As a consequence, a smaller learning problem is ad-
dressed by the SNMF for each of the phonemes.

The computational savings associated with this divide-and-
conquer approach are significant. Since the running time of the
SNMF scales with the size of the training data and the number
of elements in the dictionary, dividing the problem into SNMF
subproblems for each phoneme reduces the overall computational
burden by a factor corresponding to the number of phonemes. For
example, if the data is split into 40 phonemes, we need to solve 40
SNMF subproblems each with a complexity of 1/402 compared
to the full SNMF problem. In addition to this, since the phoneme
SNMF subproblems are much smaller than the total SNMF prob-
lem, a faster convergence of the iterative SNMF algorithm can
be expected. These advantages makes it desirable to compare the
quality of sparse dictionaries estimated by the two methods.
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re 1: Two approaches for learning sparse dictionaries of
ch. The first approach (a) is to learn the dictionary from
arse non-negative matrix factorization of the complete train-
data. The second approach (b) is to segment the training
into individual phonemes, learn a sparse dictionary for each
eme, and compute the dictionary by concatenating the indi-
al phoneme dictionaries.

bih n b luw ih n z eh d wah n s uw n

b ih n b l uwih n z eh d wah n s uw n

BIN BLUE IN Z ONE SOON

Time [s]

0 0.2 0.4 0.6 0.8 1 1.2

Manual:

utomatic:

aveform:

re 2: The automatic phoneme transcription as computed by
rained hidden Markov model (HMM) for an example sentence
the Grid Corpus. A manual transcription is provided for com-

son, confirming the conventional hypothesis that the HMM is
eful tool in segmenting a speech signal into its phonemes.

3. Simulations
of the Grid Corpus [13] was used for evaluating the proposed
od for speech separation. The Grid Corpus consists of simple
tured sentences from a small vocabulary, and has 34 speakers
1000 sentences per speaker. Each utterance is a few seconds
word level transcriptions are available. We used half of the
us as a training set.

Phoneme Transcription

t, we used speech recognition software to generate phoneme
scriptions of the sentences. For each speaker in the corpus a
eme-based hidden Markov model (HMM) was trained using

HTK toolkit1. The HMM’s were used to compute an align-
t of the phonemes in each sentence, taking the pronuncia-
s of each word from the British English Example Pronuncia-
(BEEP) dictionary2. This procedure provided phoneme-level

scriptions of each sentence. In order to evaluate the quality

Avaiable from htk.eng.cam.ac.uk.
Available by anonymous ftp from
tp.eng.cam.ac.uk/pub/comp.speech/dictionaries/beep.tar.gz.
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Figure 3: A few samples of columns of phoneme dictionaries
learned from female speech. The SNMF was applied to data,
which had been phoneme-labelled by a speech recognizer. Not
surprisingly, the basis functions exhibit the some general proper-
ties of the respective phonemes, and additional variation is cap-
tured by the algorithm, such as the fundamental frequency in the
case of voiced phonemes.

of the phoneme alignment, the automatic phoneme transcription
was compared to a manual transcription for a few sentences. We
found that the automatic phoneme alignment in general was quite
reasonable. An example is given in Figure 2.

3.2. Preprocessing and Learning Dictionaries

We preprocessed the speech data in a similar fashion to Ellis and
Weiss [11]: the speech was prefiltered with a high-pass filter,
1 − 0.95z−1, and the STFT was computed with an analysis win-
dow of 32ms at a sample rate of 25kHz. An overlap of 50 percent
was used between frames. This yielded a spectrogram with 401
frequency bins which was then mapped into 80 frequency bins on
the Mel scale. The training set was re-weighted so that all frames
containing energy above a threshold were normalized by their stan-
dard deviation. The resulting magnitude Mel-scale spectrogram
representation was employed in the experiments.

In order to assess the effects of the model hyper-parameters
and the effect of splitting the training data according the phoneme
transcriptions, a subset of four male and four female speakers were
extracted from the Grid Corpus. We constructed a set of 64 mixed
sentences by mixing two randomly selected sentences for all com-
binations of the eight selected test speakers.

Two different sets of dictionaries were estimated for each
speaker. The first set was computed by concatenating the spec-
trograms for each speaker and computing the SNMF on the com-
plete training data for that speaker. The second set was com-
puted by concatenating the parts of the training data correspond-
ing to each phoneme for each speaker, computing the SNMF for
each phoneme spectrogram individually, and finally concatenat-
ing the individual phoneme dictionaries. To save computation,
only 10 percent of the training set was used to train the dictionar-
ies. In a Matlab environment running on a 1.6GHz Intel proces-
sor the computation of the SNMF for each speaker took approxi-
mately 30 minutes, whereas the SNMFs for individual phonemes
were computed in a few seconds. The algorithm was allowed
to run for maximally 500 iterations or until convergence as de-
fined by the relative change in the cost function. Figure 3 shows
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Complete
Segmented
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Sparsity Parameter, λ

Complete
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0.0001 0.001 0.01 0.1
3

4

5

6

b

re 4: Average signal-to-noise ratio (SNR) of the separated sig-
for dictionaries trained on the complete speech spectrograms
on individual phonemes, (a) as a function of the dictionary

, N , with sparsity λ = 0.1, and (b) as a function of the spar-
with N = 560. We found that the SNMF algorithm did not
useful results when λ = 1.

ples from a dictionary which was learned using SNMF on
phoneme-segmented training data for a female speaker. The
onaries were estimated for four different levels of sparsity,
{0.0001, 0.001, 0.01, 0.1}, and four different dictionary

s, N = {70, 140, 280, 560}. This was done for both the com-
and the phoneme-segmented training data.

Speech Separation

each test sentence, we concatenated the dictionaries of the
speakers in the mixture, and computed the code matrix using
NMF updates. Then, we reconstructed the individual magni-
spectra of the two speakers and mapped them from the Mel-

uency domain into the linear frequency STFT domain. Sepa-
waveforms were computed by spectral masking and spectro-
inversion, using the original phase of the mixed signal. The

rated waveforms were then compared with the original clean
als, computing the signal-to-noise ratio.
The results in Figure 4 show that the quality of separation in-
ses with N . This agrees well with the findings of Ellis and
ss [11]. Furthermore, the choice of sparsity, λ, is impor-
for the performance of the separation method, especially in

case of unsegmented data. The individual phoneme-level dic-
aries are so small in terms of N that the gain from enforc-
sparsity in the NMF is not as significant; the segmentation
self sparsifies the dictionary to some extend. Table 1 shows
the method works best for separating speakers of opposite
er, as would be expected. Audio examples are available at

kelschmidt.dk/interspeech2006 .



Complete Segmented

Same gender 4.8±0.4 dB 4.3±0.3 dB
Opp. gender 6.6±0.3 dB 6.4±0.3 dB

Table 1: Average signal-to-noise ratio (SNR) of the separated
signals for dictionaries trained on the complete speech spectro-
grams and on individual phonemes. Dictionaries were learned with
N = 560 and λ = 0.1.

TMR 6dB 3dB 0dB −3dB −6dB −9dB
Human Performance

ST 90% 72% 54% 52% 60% 68%
SG 93% 85% 76% 72% 77% 80%
DG 94% 91% 86% 88% 87% 83%
All 92% 83% 72% 71% 75% 77%

Proposed Method
ST 56% 53% 45% 38% 31% 28%
SG 60% 57% 52% 44% 37% 32%
DG 73% 72% 71% 63% 54% 41%
All 64% 62% 58% 51% 42% 35%

Table 2: Results from applying the SNMF to the Speech Sepa-
ration Challenge: the word-recognition rate (WRR) on separated
mixtures of speech in varying target-masker ratios (TMR) in same
talker (ST), same gender (SG) different gender (DG), and overall
(All) conditions compared with human performance on the mix-
tures. The WRR should be compared to that of other algorithms
applied to the same test set (see the conference proceedings).

3.4. Interspeech 2006: Speech Separation Challenge

We evaluated the algorithm on the Speech Separation test set,
which was constructed by adding a target and a masking speaker
at different target-to-masker ratios (TMR)3. As an evaluation cri-
terion, the word-recognition rate (WRR) for the letter and number
in the target speech signal was computed using the HTK speech
recognizer trained on data separated by the proposed method. A
part of the test was to blindly identify the target signal as the one
separated signal, which containing the word ‘white’. A total of 600
mixtures were evaluated for each TMR. The source signals were
separated and reconstructed in the time-domain as described pre-
viously. In Table 2, the performance of the method is contrasted
with the performance of human listeners [14]. A subtask in ob-
taining these results was to estimate the identities of the speak-
ers in the mixtures. This was done by exhaustively applying the
SNMF to the signals with all pairs of two dictionaries, selecting
the combination that gave the best fit. We are currently investigat-
ing methods to more efficiently determine the active sources in a
mixture.

4. Discussion and Outlook
We have successfully applied sparse non-negative matrix factor-
ization (SNMF) to the problem of monaural speech separation.
The SNMF learns large overcomplete dictionaries, leading to a
more sparse representations of individual speakers than for exam-
ple the basic NMF. Inspection of the dictionaries reveals that they
capture fundamental properties of speech, in fact they learn ba-

3This test set is due to Cooke and Lee. It is available at
http://www.dcs.shef.ac.uk/ martin/SpeechSeparationChallenge.htm.
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unctions that resemble phonemes. This has lead us to adopt
rking hypothesis that the learning of signal dictionaries on a
eme level is a computational shortcut to the goal, leading to

lar performance. Our experiments show that the practical per-
ance of sparse dictionaries learned in this way performs only
tly worse than dictionaries learned on the complete dataset.
ture work, we hope to benefit further from the phoneme la-
ng of the dictionaries in formulating transitional models in the
ding space of the SNMF, hopefully matching the dynamics of
ch.
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