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Abstract

The Minimum Bayes Risk (MBR) framework has been a success-
ful strategy for the training of hidden Markov models for large vo-
cabulary speech recognition. Practical implementations of MBR
must select an appropriate hypothesis space and loss function. The
set of word sequences and a word-based Levenshtein distance may
be assumed to be the optimal choice but use of phoneme-based cri-
teria appears to be more successful. This paper compares the use
of different hypothesis spaces and loss functions defined using the
system constituents of word, phone, physical triphone, physical
state and physical mixture component. For practical reasons the
competing hypotheses are constrained by sampling. The impact
of the sampling technique on the performance of MBR training is
also examined.

Index Terms: discriminative training, Minimum Bayes Risk.

1. Introduction

Discriminative training of acoustic models has yielded test set per-
formance improvement over maximum likelihood (ML) training
in large vocabulary continuous speech recognition (LVCSR). Re-
cently acoustic models optimised using the maximum mutual in-
formation (MMI) criterion have outperformed those trained using
the ML criterion for the task of conversational telephone speech
(CTS) transcription [1].

The MMI criterion aims to increase the posterior probability
of the correct transcription of the acoustic training data. Hence it
is not directly linked to the standard performance measurement,
word error rate (WER). Contrastingly the Minimum Bayes Risk
(MBR) estimation framework [2] incorporates a performance mea-
surement, known as the loss function, into the training criterion.

When using a MAP decoder with parameters 6 the expected
value of the loss is given by
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where © is an acoustic observation sequence and W is the cor-
responding correct hypothesis. W is the hypothesis space and
I(W,W') is the loss function. If the hypothesis space is the set
of all possible word sequences and the loss function is the Leven-
shtein (string edit) distance between word sequences W and W'
then the expected loss is identical to the expected WER.

Since reduction of the expected WER is the aim of most pa-
rameter estimation techniques R (0) is the ideal training objec-
tive function. However it is not useful since the joint distribution
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of acoustics and word sequences P(W, ©) is unknown. The nor-
malised MBR objective function R () given by
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approximates the expected loss using a finite training dataset. Here
O" represents the acoustic feature sequence associated with the
™" training utterance, WW" is the corresponding correct hypothe-
sis and IV is the number of training examples. Note that as the
training set size increases the normalised MBR objective function
converges to the expected loss given by Equation 1. Using a hy-
pothesis space equal to the set of all possible word sequences and
the Levenshtein word error loss function the MBR technique has
been applied to LVCSR with reported improvements over MMI-
trained systems [3].

Minimum phone error (MPE) training [4] can be interpreted
as an instance of MBR training where the set of all possible phone
sequences forms the hypothesis space. The Levenshtein word error
loss function is replaced by a phoneme error loss function. Use of
this alternative criterion has been shown to both outperform MMI
and yield test set performance gains over an equivalent word-level
MBR criterion on a CTS task [5].

This paper builds on the ideas of MPE by further exploring the
use of alternative hypothesis spaces within the MBR parameter re-
estimation framework. Frame error rate is used as a loss function,
allowing the definition of a range of alternative criteria covered
by the MBR framework. Techniques for predicting the effective-
ness of these criteria are presented and their actual effectiveness is
evaluated.

The rest of the paper is organised as follows. Section 2
overviews the theory and technical implementation of MBR pa-
rameter re-estimation. Section 3 introduces a method for predict-
ing the effectiveness of the MBR training criterion. Experimental
evaluations of the criteria are reported in Section 4 while Section
5 discusses possible future research.

2. MBR Theory and Implementation

The MBR parameter updates for hidden Markov models with
Gaussian output distributions are derived in [2]. We repeat the
mean update here for convenience.
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where [i, is the updated mean of mixture component s, ps is the
current mean, oy is the acoustic feature vector of the t*" frame of
the ‘" training example. D is a learning rate discussed in Sec-
tion 2.4, W is the hypothesis space, v (¢|W’, O") is the posterior
probability of occupancy of component s at time ¢ given hypothe-
sis W’ and observation sequence O" and

K"(W'|6) = P(W'|O",0) [lfw — (W, W’)] 4
where [, is the average loss given by
low =Y PW|O",0)IW",W) ®)
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Here W is the reference hypothesis.

2.1. Lattice-based MBR

In the context of large vocabulary systems, when using the set of
all possible word sequences as the hypothesis space W, a pro-
hibitively large amount of computation is required to calculate
the statistics required for MBR estimation. Practical solutions
to this problem are to approximate this space either using an N-
best list of the most likely hypotheses [2] or to use lattices as
a more compact representation [1]. Word lattices which encode
temporal alignment information (i.e. word start and end times)
[6] are used in this work. These lattices are generated via an un-
constrained recognition pass. The most likely alignments of the
correct word sequence, generated using a constrained recognition
pass, are merged into the recognition lattice to form a consolidated
recognition lattice. This lattice can be viewed as a representation
of alternative word-level alignments of the acoustic data.

Constraining the search space to only those alignments speci-
fied by the lattice, Equation 3 may be written
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where a is a lattice arc representing a word, its start time as¢art and
end time aena, A" is the set of all arcs in the lattice and

KT(G‘|0) :p(a\OT,Q) I:l(:/U 7Z(WT7G‘)] (7)
where p(a|O", 0) is the posterior probability that arc a is included
in a path i.e. a contiguous sequence of arcs from the lattice start
node to the lattice end node. I(W",a) is the posterior-weighted
sum of the loss of all the lattice paths which include arc a, while
I3, 1s the posterior-weighted sum of the loss of all the lattice paths.

Calculation of [(W", a) can be problematic when using a Lev-
enshtein loss function. These difficulties arise because in this case
an arc may make different contributions to the loss of two different
containing paths. A possible solution to this issue is presented in
[3] and involves assigning a sequence of words within the refer-
ence transcription to each lattice arc, referred to as lattice-to-string
alignment. This is both conceptually and practically problematic
and so in this work, likewise in the approximate MPE technique
[5], an alternative loss function is defined which avoids the diffi-
culties imposed by the Levenshtein loss function.

2.2. Hypothesis Spaces and Loss Functions

To fully specify the MBR criterion one must define the hypoth-
esis space W and the loss function [(W", W). In this work the
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hypothesis spaces investigated are given by the set of all possi-
ble temporal alignments of the following five system constituents:
words, phones, physical triphone models, physical states and phys-
ical mixture components. Words and phones are those labels used
in the recognition dictionary. A physical state represents a state
cluster and a physical triphone model represents each HMM com-
prising a unique set of physical states. A physical mixture compo-
nent is a Gaussian mixture component of the output distribution of
a physical state.

A sample of the hypothesis space is represented by the word
lattice described above in the following way. Associated with each
arc of the consolidated recognition lattice is a constituent align-
ment. This is a temporal alignment of one of the following: words,
phones, physical triphone models, physical states or physical mix-
ture components. Thus any lattice path has an associated con-
stituent alignment; the concatenation of the constituent alignments
of its arcs. The lattice may therefore be viewed as a representation
of competing constituent alignments i.e. a sample of the hypothe-
sis space W.

2.2.1. Loss Function Definition

The loss of an alignment W is defined as the number of frames
at which the constituent specified within W differs from the con-
stituent specified by the reference hypothesis W". This loss func-
tion is referred to as the frame error rate (FER).

The loss associated with each lattice path is defined as the loss
of its associated alignment. Defining the FER of an arc as the num-
ber of frames for which the associated alignment differs from the
reference hypothesis one can see that the FER of a path is simply
the sum of the FER of its arcs. Each arc therefore contributes an
equal amount to the loss of its containing paths and the difficulties
encountered when using a Levenshtein distance are avoided.

Note that the reference hypothesis W7 is the most likely con-
stituent alignment of the correct (word-level) transcription, gener-
ated using a constrained recognition pass.

2.3. Forward-Backward Algorithms

Calculation of the posterior probabilities v (t|a, O") necessary
to perform the update of Equation 6 requires a standard forward-
backward pass over the models defined by each lattice arc a using
the segment of acoustic data assigned to arc a. In order to calcu-
late K" (alf), a lattice-level forward-backward pass is conducted
as detailed in [5].

2.4. I-Smoothing and the Learning Rate D

MBR parameter updates can be unstable and require regularisa-
tion. The I-smoothing technique [4] defines a prior distribution
over the acoustic model parameters, the sharpness of which is de-
termined by a parameter 77. This prior distribution is then inte-
grated into the MBR objective function to smooth the parameter
updates. This technique is used in the experiments described in
Section 4.

The learning rate D of Equation 6 is specific to each Gaus-
sian mixture component. To determine its value the occupancy-
dependent scheme described in [5] is used, i.e. for each mixture
component §

1. Calculate D™, the minimum D required to ensure all
variance updates are positive for component s.
2. Setygt =3 Z‘ZGASM K" (a|0)

den
s

Qend s
t=astart 19
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where A}, denotes the subset of lattice arcs in A" for
which K" (a|0) is negative.

den

Set the learning rate Dy to max (2D E~4
is a configurable parameter.

) where E

3. Performance Prediction

To predict the effectiveness of a particular MBR criterion one can
measure the strength of the correlation between the criterion func-
tion and the performance measurement of interest, in this case the
test set WER. The higher this correlation the more effective (in
terms of test set WER improvement) the criterion should be.

To measure such correlations several datapoints are required.
A datapoint is a 2-tuple (R (), £()) where R(0) is the criterion
function and £(0) is the test set WER. Multiple datapoints are gen-
erated by sampling the parameter space then measuring the values
of R(6;) and £(6;) for each point 6; in the parameter space. A
point in parameter space is generated by adapting the baseline sys-
tem.

3.1. Baseline System

The baseline system is trained using maximum likelihood training
and the WSJ0 corpus SI84 Sennheiser microphone dataset. This
comprises 12.67 hours of speech data, 83 different speakers and
approximately 7000 utterances.

The acoustic models used are tied-state triphone models. Max-
imum likelihood clustering techniques [6] are used to cluster the
triphone states. 8 Gaussian mixtures model the state output dis-
tributions and 3877 tied states are used. A 39-dimensional fea-
ture vector is used to represent the acoustic data. This comprises
12 perceptual linear prediction (PLP) coefficients, log energy and
the first and second time derivatives of these. The features are
normalised using cepstral mean normalisation to reduce the ef-
fects of the input channel. All training and test utterances are pre-
processed to contain a maximum of 0.1 seconds of silence at the
start and end to ensure effectiveness of cepstral mean normalisa-
tion.

3.2. Sampling the Parameter Space

Parameter space samples 0, are generated via speaker adaptation
of the baseline system described above. For each speaker in the
WSJ0 SI84 Sennheiser dataset the speaker-specific subset of ut-
terances are used to adapt the baseline system using maximum
likelihood linear regression [7]. Thus 83 speaker-dependent (SD)
systems are generated, a sample of the parameter space.

3.3. Measuring the Test Set WER

The WSJO0 speaker-independent 5k Sennheiser evaluation dataset
is used as test data. The closed vocabulary Sk bigram language
model provided with the WSJO corpus is used in decoding with
a language model scale factor of 16. The test set WER £(6;) is
measured for each SD system 6;.

3.4. MBR Criterion Correlations

Good parameter optimisation criteria should perfectly correlate
with the word error rate on an independent test set. In practice
this correlation is not only dependent on the optimal choice of
loss function but also on the implementation detail (e.g. hypothe-
sis space construction) and the amount of training data available.
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Hence the logical choice of criterion function does not necessarily
yield optimal performance. In this section the criterion function
R(0;) is calculated for each SD system 6; using a unigram lan-
guage model. The values R(6;) are then correlated with the test
set word error rates £(6;) described in Section 3.3.

To measure the MBR criterion the hypothesis space is sam-
pled since exploration of all hypotheses is computationally infea-
sible for the spaces considered here. Sampling the space V means
choosing an appropriate subset of VV for each utterance.

3.4.1. 1-Best Sampling

A first approximation uses the first-best hypothesis as a simplified
representation of confusability. The most likely constituent align-
ment of the most likely word sequence is used as the sole sample
of the hypothesis space. The MBR criterion of each SD system 6;
is then measured for each hypothesis space using both Levenshtein
distance and FER. Note that it is possible to use the Levenshtein
loss in this case because a single hypothesis does not present the
difficulties discussed in Section 2.1. Table 1 shows the correlation
coefficient of R(6;) with £(0;) for each hypothesis space/error
metric combination. Using the significance test for the difference

Table 1: Correlation of 1-Best MBR Criterion with Test Set WER

Error Metric ]

Hypothesis Space | Levenshtein [ FER ‘
Word 0.11 0.13
Phone 0.14 0.27
Physical Triphone 0.21 0.30
Physical State 0.21 0.31
Physical Mixture 0.39 0.39

between dependent correlations [8] it is observed that use of the
FER metric yields a significantly greater (at the 95% confidence
level) correlation coefficient than the Levenshtein metric when us-
ing phone, physical triphone and physical state hypothesis spaces.
Defining the space resolution as the average number of system
constituent labels per utterance, note that this metric increases on
descending the rows of Table 1. The correlation coefficient in-
creases with space resolution in the case of both the FER and the
Levenshtein metric. In the case of the FER metric almost all coef-
ficient pairs are significantly different at the 95% confidence level.

The use of temporal information within the loss function defi-
nition and deployment of higher-resolution hypothesis spaces both
result in a 1-best MBR criterion more closely correlated with the
test set WER. One therefore predicts that usage of such informa-
tion will result in a criterion which is more robust to sparse sam-
pling of the hypothesis space. Smaller sample sizes reduce the
amount of computation required for MBR training so this observa-
tion is also of pragmatic importance.

3.4.2. Sampling Multiple Hypotheses

Two different methods are used to sample multiple hypotheses.
The first technique is to sample the most likely constituent align-
ments. This sample set is referred to as W,

The second sampling method firstly identifies the most likely
word-level alignments. Then, for each of these word-level align-
ments, the most likely constituent alignment is identified and
added to the sample set. The resulting sample set is referred to
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as WY. Note that when word-level constituent alignments are
used W% and WY coincide.

In all cases the sample set is represented in lattice format as
described in Section 2.2. A threshold is applied to limit the density
of this lattice. This threshold is identical for both of the above
sampling techniques.

Table 2 displays the correlation coefficient of R(6;) with
E(0;) for each hypothesis space/sampling method combination.
The benefit of incorporation of multiple hypotheses is evident
since the correlation coefficients of Table 2 are, in general, signif-
icantly higher than those of Table 1. However very few significant
differences are observed between the coefficients of Table 2. One
therefore predicts similar test set performance after MBR param-
eter re-estimation using each hypothesis space/sampling method
combination.

Table 2: Correlation of MBR Criterion with Test Set WER

Sample ‘

Hypothesis Space | WY \ wt ‘
Word 0.51 | 0.51
Phone 042 | 0.44
Physical Triphone | 0.47 | 0.47
Physical State 0.39 | 0.40
Physical Mixture | 0.39 | 0.40

4. Evaluation

The test of the effectiveness of an MBR training criterion is to
measure its influence on test set WER. This section reports the
evaluation of each of the MBR configurations.

The baseline system described in Section 3.1 is re-estimated
using the WSJO SI84 Sennheiser dataset and 7 iterations of
MBR training. An I-smoothing 77 of 100 and an E value of 4
are used in parameter re-estimation. A unigram language model
[9] and acoustic probability scaling [1] are deployed to improve
the generalisation of the procedure. A language model scale factor
of % and an acoustic model scale factor of 11—6 are used.

The decoding procedure is as described in Section 3.3. Table
3 displays the test set WER when using each of the MBR configu-
rations. The ML baseline WER for this task is 6.63%.

Table 3: WSJO Sk WER

Sample |

Hypothesis Space | W" [ Wk ‘
Word 6.55 | 6.55
Phone 6.52 | 6.59
Physical Triphone | 6.52 | 6.59
Physical State 6.53 | 6.67
Physical Mixture | 6.53 | 6.61

When using the hypothesis sample W™ test set WER im-
provements over the ML baseline are observed in all cases and no
significant difference is observed between the different hypothesis
spaces. This concurs with the predictions of Section 3.4.2.

Using the hypothesis sample W% much smaller test set WER
improvements are observed in general. This discrepancy between
the sampling techniques is not predicted by the results of Section
3.4.2. This is because much larger samples are used in parame-
ter re-estimation and the benefits of using sample WY over W'
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are not evident when using the smaller samples deployed for the
purpose of calculating the correlation coefficients of Section 3.4.2.

5. Conclusions and Future Research

This paper has motivated the exploration of alternative hypothe-
sis spaces and loss functions within the MBR formulation. An
empirical technique for predicting the effectiveness of the MBR
configuration has been described. The impact of hypothesis space
definition and sampling technique has been examined. Evidence
has been presented to support the utilisation of temporal informa-
tion in the loss function definition and the use of a high-resolution
hypothesis space for robust MBR in cases of sparse sampling.

One deficiency of the MBR formulation described in this pa-
per derives from the fact that the reference hypotheses are gen-
erated using constrained recognition and an imperfect recognition
model. This reference alignment is then used when applying the
FER loss function. Possible future work could incorporate not just
one but several reference alignments into the FER loss function
definition to minimise punishment of favourable hypotheses which
disagree with the most likely reference alignment.

Another potential line of future research is to track the relative
performance of the MBR training configurations whilst varying
the quantity of training data. This is particularly interesting in the
case of small amounts of training data, e.g. in the case of speaker
adaptation.
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