
Hypothesis Spaces For Minimum Bayes R
Speech Recogn

Matthew Gibson, Tho

Department of Computer Science,
211 Portobello Street, Sheffi

{mgibson,th}@dcs.sh

Abstract

The Minimum Bayes Risk (MBR) framework has been a success-
ful strategy for the training of hidden Markov models for large vo-
cabulary speech recognition. Practical implementations of MBR
must select an appropriate hypothesis space and loss function. The
set of word sequences and a word-based Levenshtein distance may
be assumed to be the optimal choice but use of phoneme-based cri-
teria appears to be more successful. This paper compares the use
of different hypothesis spaces and loss functions defined using the
system constituents of word, phone, physical triphone, physical
state and physical mixture component. For practical reasons the
competing hypotheses are constrained by sampling. The impact
of the sampling technique on the performance of MBR training is
also examined.
Index Terms: discriminative training, Minimum Bayes Risk.

1. Introduction
Discriminative training of acoustic models has yielded test set per-
formance improvement over maximum likelihood (ML) training
in large vocabulary continuous speech recognition (LVCSR). Re-
cently acoustic models optimised using the maximum mutual in-
formation (MMI) criterion have outperformed those trained using
the ML criterion for the task of conversational telephone speech
(CTS) transcription [1].

The MMI criterion aims to increase the posterior probability
of the correct transcription of the acoustic training data. Hence it
is not directly linked to the standard performance measurement,
word error rate (WER). Contrastingly the Minimum Bayes Risk
(MBR) estimation framework [2] incorporates a performance mea-
surement, known as the loss function, into the training criterion.

When using a MAP decoder with parameters θ the expected
value of the loss is given by

RT (θ) =
∑

W̄∈W

∑
W ′∈W

∫
P (W ′|O, θ)l(W̄ , W ′)P (W̄ ,O)dO

(1)
where O is an acoustic observation sequence and W̄ is the cor-
responding correct hypothesis. W is the hypothesis space and
l(W̄ , W ′) is the loss function. If the hypothesis space is the set
of all possible word sequences and the loss function is the Leven-
shtein (string edit) distance between word sequences W̄ and W ′

then the expected loss is identical to the expected WER.
Since reduction of the expected WER is the aim of most pa-

rameter estimation techniques RT (θ) is the ideal training objec-
tive function. However it is not useful since the joint distribution
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coustics and word sequences P (W̄ ,O) is unknown. The nor-
sed MBR objective function R(θ) given by

R(θ) =
1

N

∑
r

∑
W ′∈W

P (W ′|Or, θ)l(W̄ r, W ′) (2)

oximates the expected loss using a finite training dataset. Here
represents the acoustic feature sequence associated with the
training utterance, W̄ r is the corresponding correct hypothe-
nd N is the number of training examples. Note that as the
ing set size increases the normalised MBR objective function
erges to the expected loss given by Equation 1. Using a hy-
esis space equal to the set of all possible word sequences and
Levenshtein word error loss function the MBR technique has

applied to LVCSR with reported improvements over MMI-
ed systems [3].
Minimum phone error (MPE) training [4] can be interpreted
n instance of MBR training where the set of all possible phone
ences forms the hypothesis space. The Levenshtein word error
function is replaced by a phoneme error loss function. Use of
alternative criterion has been shown to both outperform MMI
yield test set performance gains over an equivalent word-level
R criterion on a CTS task [5].
This paper builds on the ideas of MPE by further exploring the
of alternative hypothesis spaces within the MBR parameter re-

ation framework. Frame error rate is used as a loss function,
ing the definition of a range of alternative criteria covered

he MBR framework. Techniques for predicting the effective-
of these criteria are presented and their actual effectiveness is

uated.
The rest of the paper is organised as follows. Section 2
views the theory and technical implementation of MBR pa-
eter re-estimation. Section 3 introduces a method for predict-
the effectiveness of the MBR training criterion. Experimental
uations of the criteria are reported in Section 4 while Section
scusses possible future research.

2. MBR Theory and Implementation
MBR parameter updates for hidden Markov models with

ssian output distributions are derived in [2]. We repeat the
n update here for convenience.

∑N
r=1

∑
W ′∈W Kr(W ′|θ) ∑T (r)

t=1 γs(t|W ′,Or)or
t + Dμs∑N

r=1

∑
W ′∈W Kr(W ′|θ) ∑T (r)

t=1 γr
s (t|W ′,Or) + D

(3)
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where μ̂s is the updated mean of mixture component s, μs is the
current mean, or

t is the acoustic feature vector of the tth frame of
the rth training example. D is a learning rate discussed in Sec-
tion 2.4, W is the hypothesis space, γr

s (t|W ′,Or) is the posterior
probability of occupancy of component s at time t given hypothe-
sis W ′ and observation sequence Or and

Kr(W ′|θ) = P (W ′|Or, θ)
[
lrav − l(W̄ r, W ′)

]
(4)

where lrav is the average loss given by

lrav =
∑

W∈W
P (W |Or, θ)l(W̄ r, W ) (5)

Here W̄ r is the reference hypothesis.

2.1. Lattice-based MBR

In the context of large vocabulary systems, when using the set of
all possible word sequences as the hypothesis space W , a pro-
hibitively large amount of computation is required to calculate
the statistics required for MBR estimation. Practical solutions
to this problem are to approximate this space either using an N-
best list of the most likely hypotheses [2] or to use lattices as
a more compact representation [1]. Word lattices which encode
temporal alignment information (i.e. word start and end times)
[6] are used in this work. These lattices are generated via an un-
constrained recognition pass. The most likely alignments of the
correct word sequence, generated using a constrained recognition
pass, are merged into the recognition lattice to form a consolidated
recognition lattice. This lattice can be viewed as a representation
of alternative word-level alignments of the acoustic data.

Constraining the search space to only those alignments speci-
fied by the lattice, Equation 3 may be written

μ̂s =

∑N
r=1

∑
a∈Ar Kr(a|θ) ∑aend

t=astart
γr

s (t|a,Or)or
t + Dμs∑N

r=1

∑
a∈Ar Kr(a|θ) ∑aend

t=astart
γr

s (t|a,Or) + D
(6)

where a is a lattice arc representing a word, its start time astart and
end time aend, Ar is the set of all arcs in the lattice and

Kr(a|θ) = p(a|Or, θ)
[
lrav − l(W̄ r, a)

]
(7)

where p(a|Or, θ) is the posterior probability that arc a is included
in a path i.e. a contiguous sequence of arcs from the lattice start
node to the lattice end node. l(W̄ r, a) is the posterior-weighted
sum of the loss of all the lattice paths which include arc a, while
lrav is the posterior-weighted sum of the loss of all the lattice paths.

Calculation of l(W̄ r, a) can be problematic when using a Lev-
enshtein loss function. These difficulties arise because in this case
an arc may make different contributions to the loss of two different
containing paths. A possible solution to this issue is presented in
[3] and involves assigning a sequence of words within the refer-
ence transcription to each lattice arc, referred to as lattice-to-string
alignment. This is both conceptually and practically problematic
and so in this work, likewise in the approximate MPE technique
[5], an alternative loss function is defined which avoids the diffi-
culties imposed by the Levenshtein loss function.

2.2. Hypothesis Spaces and Loss Functions

To fully specify the MBR criterion one must define the hypoth-
esis space W and the loss function l(W̄ r, W ). In this work the
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thesis spaces investigated are given by the set of all possi-
emporal alignments of the following five system constituents:
ds, phones, physical triphone models, physical states and phys-
mixture components. Words and phones are those labels used
e recognition dictionary. A physical state represents a state

ter and a physical triphone model represents each HMM com-
ng a unique set of physical states. A physical mixture compo-
is a Gaussian mixture component of the output distribution of

ysical state.
A sample of the hypothesis space is represented by the word
ce described above in the following way. Associated with each
of the consolidated recognition lattice is a constituent align-
t. This is a temporal alignment of one of the following: words,
es, physical triphone models, physical states or physical mix-
components. Thus any lattice path has an associated con-
ent alignment; the concatenation of the constituent alignments
s arcs. The lattice may therefore be viewed as a representation
ompeting constituent alignments i.e. a sample of the hypothe-
pace W .

. Loss Function Definition

loss of an alignment W is defined as the number of frames
hich the constituent specified within W differs from the con-
ent specified by the reference hypothesis W̄ r . This loss func-
is referred to as the frame error rate (FER).
The loss associated with each lattice path is defined as the loss
s associated alignment. Defining the FER of an arc as the num-
of frames for which the associated alignment differs from the
rence hypothesis one can see that the FER of a path is simply
sum of the FER of its arcs. Each arc therefore contributes an
l amount to the loss of its containing paths and the difficulties
untered when using a Levenshtein distance are avoided.
Note that the reference hypothesis W̄ r is the most likely con-
ent alignment of the correct (word-level) transcription, gener-
using a constrained recognition pass.

Forward-Backward Algorithms

ulation of the posterior probabilities γr
s (t|a,Or) necessary

erform the update of Equation 6 requires a standard forward-
ward pass over the models defined by each lattice arc a using

segment of acoustic data assigned to arc a. In order to calcu-
Kr(a|θ), a lattice-level forward-backward pass is conducted
etailed in [5].

I-Smoothing and the Learning Rate D

R parameter updates can be unstable and require regularisa-
. The I-smoothing technique [4] defines a prior distribution
the acoustic model parameters, the sharpness of which is de-
ined by a parameter τ I . This prior distribution is then inte-

ed into the MBR objective function to smooth the parameter
tes. This technique is used in the experiments described in
ion 4.
The learning rate D of Equation 6 is specific to each Gaus-
mixture component. To determine its value the occupancy-
ndent scheme described in [5] is used, i.e. for each mixture
ponent s

. Calculate Dmin
s , the minimum D required to ensure all

variance updates are positive for component s.

. Set γden
s =

∑
r

∑
a∈Ar

den
Kr(a|θ) ∑aend

t=astart
γr

s (t|a,Or)



where Ar
den denotes the subset of lattice arcs in Ar for

which Kr(a|θ) is negative.

3. Set the learning rate Ds to max(2Dmin
s , Eγden

s ) where E
is a configurable parameter.

3. Performance Prediction
To predict the effectiveness of a particular MBR criterion one can
measure the strength of the correlation between the criterion func-
tion and the performance measurement of interest, in this case the
test set WER. The higher this correlation the more effective (in
terms of test set WER improvement) the criterion should be.

To measure such correlations several datapoints are required.
A datapoint is a 2-tuple (R(θ), E(θ)) where R(θ) is the criterion
function and E(θ) is the test set WER. Multiple datapoints are gen-
erated by sampling the parameter space then measuring the values
of R(θi) and E(θi) for each point θi in the parameter space. A
point in parameter space is generated by adapting the baseline sys-
tem.

3.1. Baseline System

The baseline system is trained using maximum likelihood training
and the WSJ0 corpus SI84 Sennheiser microphone dataset. This
comprises 12.67 hours of speech data, 83 different speakers and
approximately 7000 utterances.

The acoustic models used are tied-state triphone models. Max-
imum likelihood clustering techniques [6] are used to cluster the
triphone states. 8 Gaussian mixtures model the state output dis-
tributions and 3877 tied states are used. A 39-dimensional fea-
ture vector is used to represent the acoustic data. This comprises
12 perceptual linear prediction (PLP) coefficients, log energy and
the first and second time derivatives of these. The features are
normalised using cepstral mean normalisation to reduce the ef-
fects of the input channel. All training and test utterances are pre-
processed to contain a maximum of 0.1 seconds of silence at the
start and end to ensure effectiveness of cepstral mean normalisa-
tion.

3.2. Sampling the Parameter Space

Parameter space samples θi are generated via speaker adaptation
of the baseline system described above. For each speaker in the
WSJ0 SI84 Sennheiser dataset the speaker-specific subset of ut-
terances are used to adapt the baseline system using maximum
likelihood linear regression [7]. Thus 83 speaker-dependent (SD)
systems are generated, a sample of the parameter space.

3.3. Measuring the Test Set WER

The WSJ0 speaker-independent 5k Sennheiser evaluation dataset
is used as test data. The closed vocabulary 5k bigram language
model provided with the WSJ0 corpus is used in decoding with
a language model scale factor of 16. The test set WER E(θi) is
measured for each SD system θi.

3.4. MBR Criterion Correlations

Good parameter optimisation criteria should perfectly correlate
with the word error rate on an independent test set. In practice
this correlation is not only dependent on the optimal choice of
loss function but also on the implementation detail (e.g. hypothe-
sis space construction) and the amount of training data available.
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ce the logical choice of criterion function does not necessarily
optimal performance. In this section the criterion function

i) is calculated for each SD system θi using a unigram lan-
e model. The values R(θi) are then correlated with the test
ord error rates E(θi) described in Section 3.3.

To measure the MBR criterion the hypothesis space is sam-
since exploration of all hypotheses is computationally infea-
for the spaces considered here. Sampling the space W means
sing an appropriate subset of W for each utterance.

. 1-Best Sampling

rst approximation uses the first-best hypothesis as a simplified
esentation of confusability. The most likely constituent align-
t of the most likely word sequence is used as the sole sample
e hypothesis space. The MBR criterion of each SD system θi

en measured for each hypothesis space using both Levenshtein
nce and FER. Note that it is possible to use the Levenshtein
in this case because a single hypothesis does not present the
culties discussed in Section 2.1. Table 1 shows the correlation
ficient of R(θi) with E(θi) for each hypothesis space/error
ic combination. Using the significance test for the difference

le 1: Correlation of 1-Best MBR Criterion with Test Set WER

Error Metric
Hypothesis Space Levenshtein FER

Word 0.11 0.13
Phone 0.14 0.27

Physical Triphone 0.21 0.30
Physical State 0.21 0.31

Physical Mixture 0.39 0.39

een dependent correlations [8] it is observed that use of the
metric yields a significantly greater (at the 95% confidence

l) correlation coefficient than the Levenshtein metric when us-
phone, physical triphone and physical state hypothesis spaces.
ning the space resolution as the average number of system
tituent labels per utterance, note that this metric increases on
ending the rows of Table 1. The correlation coefficient in-
ses with space resolution in the case of both the FER and the
enshtein metric. In the case of the FER metric almost all coef-
nt pairs are significantly different at the 95% confidence level.
The use of temporal information within the loss function defi-
n and deployment of higher-resolution hypothesis spaces both
lt in a 1-best MBR criterion more closely correlated with the
set WER. One therefore predicts that usage of such informa-
will result in a criterion which is more robust to sparse sam-

g of the hypothesis space. Smaller sample sizes reduce the
unt of computation required for MBR training so this observa-
is also of pragmatic importance.

. Sampling Multiple Hypotheses

different methods are used to sample multiple hypotheses.
first technique is to sample the most likely constituent align-
ts. This sample set is referred to as WL.
The second sampling method firstly identifies the most likely
d-level alignments. Then, for each of these word-level align-
ts, the most likely constituent alignment is identified and
d to the sample set. The resulting sample set is referred to



as WW . Note that when word-level constituent alignments are
used WL and WW coincide.

In all cases the sample set is represented in lattice format as
described in Section 2.2. A threshold is applied to limit the density
of this lattice. This threshold is identical for both of the above
sampling techniques.

Table 2 displays the correlation coefficient of R(θi) with
E(θi) for each hypothesis space/sampling method combination.
The benefit of incorporation of multiple hypotheses is evident
since the correlation coefficients of Table 2 are, in general, signif-
icantly higher than those of Table 1. However very few significant
differences are observed between the coefficients of Table 2. One
therefore predicts similar test set performance after MBR param-
eter re-estimation using each hypothesis space/sampling method
combination.

Table 2: Correlation of MBR Criterion with Test Set WER

Sample
Hypothesis Space WW WL

Word 0.51 0.51
Phone 0.42 0.44

Physical Triphone 0.47 0.47
Physical State 0.39 0.40

Physical Mixture 0.39 0.40

4. Evaluation
The test of the effectiveness of an MBR training criterion is to
measure its influence on test set WER. This section reports the
evaluation of each of the MBR configurations.

The baseline system described in Section 3.1 is re-estimated
using the WSJ0 SI84 Sennheiser dataset and 7 iterations of
MBR training. An I-smoothing τ I of 100 and an E value of 4
are used in parameter re-estimation. A unigram language model
[9] and acoustic probability scaling [1] are deployed to improve
the generalisation of the procedure. A language model scale factor
of 1

2
and an acoustic model scale factor of 1

16
are used.

The decoding procedure is as described in Section 3.3. Table
3 displays the test set WER when using each of the MBR configu-
rations. The ML baseline WER for this task is 6.63%.

Table 3: WSJ0 5k WER

Sample
Hypothesis Space WW WL

Word 6.55 6.55
Phone 6.52 6.59

Physical Triphone 6.52 6.59
Physical State 6.53 6.67

Physical Mixture 6.53 6.61

When using the hypothesis sample WW test set WER im-
provements over the ML baseline are observed in all cases and no
significant difference is observed between the different hypothesis
spaces. This concurs with the predictions of Section 3.4.2.

Using the hypothesis sample WL much smaller test set WER
improvements are observed in general. This discrepancy between
the sampling techniques is not predicted by the results of Section
3.4.2. This is because much larger samples are used in parame-
ter re-estimation and the benefits of using sample WW over WL
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not evident when using the smaller samples deployed for the
ose of calculating the correlation coefficients of Section 3.4.2.

5. Conclusions and Future Research
paper has motivated the exploration of alternative hypothe-

paces and loss functions within the MBR formulation. An
irical technique for predicting the effectiveness of the MBR
guration has been described. The impact of hypothesis space
ition and sampling technique has been examined. Evidence

been presented to support the utilisation of temporal informa-
in the loss function definition and the use of a high-resolution
thesis space for robust MBR in cases of sparse sampling.

One deficiency of the MBR formulation described in this pa-
derives from the fact that the reference hypotheses are gen-
d using constrained recognition and an imperfect recognition
el. This reference alignment is then used when applying the
loss function. Possible future work could incorporate not just

but several reference alignments into the FER loss function
ition to minimise punishment of favourable hypotheses which

gree with the most likely reference alignment.
Another potential line of future research is to track the relative
ormance of the MBR training configurations whilst varying
uantity of training data. This is particularly interesting in the
of small amounts of training data, e.g. in the case of speaker
tation.
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