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Abstract
So far, cross-language voice conversion requires at least one bilin-
gual speaker and parallel speech data to perform the training. This
paper shows how these obstacles can be overcome by means of
a recently presented text-independent training method based on
unit selection. The new method is evaluated in the framework
of the European speech-to-speech translation project TC-Star and
achieves a performance similar to that of text-dependent intra-
lingual voice conversion.
Index Terms: voice conversion, unit selection, TC-Star.

1. Introduction
Voice conversion is the transformation of a source speaker’s voice
to that of a target speaker. Usually, the conversion is performed in
two steps:

• Model parameters are trained based on training speech data
of source and target speaker,

• these parameters specify the characteristics of a conversion
function that is applied to source speech data and aims at
transforming the latter to sound similar to the target voice.

As suggested one decade ago by Stylianou et al. [1], we use a con-
version function based on a linear transformation in feature space.
The parameters of the conversion function are derived using a joint
Gaussian mixture model (GMM) of source and target speech fea-
tures. This approach is still state-of-the-art and regarded as robust
and capable of producing high speech quality [2].
As features, line spectral frequencies (LSFs) have shown to have
superior properties compared to other features commonly used in
speech processing (as mel frequency cepstral coefficients or linear
predictive coefficients) [2]. Furthermore, most voice conversion
systems apply pitch-synchronous processing, since this allows for
using standard pitch modification techniques to change prosodical
properties of the source speaker to become closer to those of the
target speaker. I.e., a speech frame (which is basis for computing
a feature vector) consists of one pitch period1.
When training parameters of a joint GMM, for each source feature
vector of the training data we need a corresponding target feature
vector. The conventional solution of this problem strongly limits
the applicability of the voice conversion technology:
So far, most training procedures use parallel training utterances of
source and target speaker, align the speech by means of dynamic
time warping (DTW) and, finally, derive feature vector sequences
whose contents are treated as being parallel. We call this approach
text-dependent [3].
However, several applications require a training based on arbi-

This work has been partially funded by the European Union under the
integrated project TC-Star - Technology and Corpora for Speech to Speech
Translation - http://www.tc-star.org.

1In our system, we take two pitch periods as a frame which supports
more robust pitch modification.
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re 1: The components of a speech-to-speech translation sys-
with voice conversion. V and L stand for voice and language,
d T for source and target.

utterances of source and target speaker (text-independent
oach). In particular, this is necessary when source and tar-
speaker use different languages which is referred to as cross-
uage voice conversion [4].
aim of the European speech-to-speech translation project TC-
[5] is to recognize the speech of an English-speaking person,

slate it to a target language (Spanish or Mandarin) and then
ert it to speech using a text-to-speech synthesizer. Finally, the

dard voice of the synthesizer is to be converted to the voice of
source speaker to preserve its individuality. Here, source and
et are based on different languages. Hence, we face the cross-
uage voice conversion task. Figure 1 shows the components
speech-to-speech translation system with voice conversion.

2. Related Work
restingly, the very first investigations on cross-language voice
ersion in the beginning of the nineties also focused on the
ch-to-speech translation task [4]2. At that time, ATR – where
uthors of the latter paper were working – was developing a so-
d interpreting telephone. This was the name of a speech-to-
ch translation system applied to telephone conversations and
rated a cross-language voice conversion module to preserve
ker recognizability across languages.

This paper’s authors also seem to be the first dealing with voice con-
on in general, see [8].
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This first attempt was based on a codebook mapping that used a
discrete representation of the acoustic feature space. To the best
of our knowledge, there were no investigations carried out dealing
with the technique’s speech quality. Besides, it was not sufficiently
shown whether this approach is able to successfully convert voice
characteristics. The results reported were based on objective error
measures that are not standardized and sometimes hardly correlate
with the perceptive similarity, cf. [3]. Subjective experiments us-
ing the described codebook mapping technique reported successful
gender transformation from male to female and 61% successfully
transformed examples for male-to-male conversion using an ABX
test3 [8].
In Table 1, the discussed cross-language voice conversion tech-
niques are compared in terms of training type, speech quality and
conversion performance.
More than a decade later, Japanese researchers (some of them
also at ATR) continued the investigations on cross-language voice
conversion and applied the linear transformation-based conversion
function introduced in Section 1. However, unlike their predeces-
sors, Mashimo at al. [6] avoided the text independence problem
by using bilingual (Japanese/English) speakers as source speakers.
The conversion function was trained on parallel Japanese utter-
ances of source and target speaker and applied to English source
speech in conversion phase. The only difference to text-dependent
intra-lingual voice conversion are the distinct phoneme sets of
source and target language. The corresponding intra-lingual base-
line system described in [10] achieved a fair speech quality (mean
opinion score 2.9) and a conversion performance of about 90% on
an ABX scale.
In 2003, we investigated the application of vocal tract length nor-
malization (VTLN), a technique which is widely used in speech
recognition, to cross-language voice conversion [7]. Due to the
very small number of conversion parameters (2 to some dozens), a
phonetic clustering algorithm could be applied that led to a map-
ping of speech segments in non-parallel speech. Consequently, the
proposed algorithm was text-independent. On the other hand, the
limited parameter number only allowed for converting the main
voice characteristics (as gender and age) and, hence, sometimes
did not properly convert voices. An ABX test showed that about
50% of the cases were successfully transformed. The speech qual-
ity of VTLN-based voice conversion was found to be fair; subjec-
tive listening tests reported a mean opinion score of 3.0 [11].

3. Cross-Language Voice Conversion
Training Based on Unit Selection

3.1. Motivation

The goal of the following investigation is to find a way to change
the training interface of a state-of-the-art text-dependent and intra-
lingual voice conversion system to become text-independent and
applicable to the cross-language task. The resulting system should

3Kain and Macon [9] showed that the ABX test often is not powerful
enough to assess the performance of a voice conversion technique. There-
fore, in the framework of TC-Star, a mean opinion score is used as de-
scribed in Section 4.3.
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bine the training type of Abe et al. with the performance of
himo et al. as required in applications like speech-to-speech
slation.

The Concept
recent study on text-independent voice conversion parameter
ing [12], we presented a technique with unit selection which
eves almost the same performance on the intra-lingual task as
-dependent training based on DTW. It takes two sequences of
ure (LSF) vectors representing source and target speech, xM

1

yN
1 , and selects from the latter the feature vector sequence ỹM

1

optimally corresponds to the source sequence. This is done by
ng two criteria into account:
• The distance between source and corresponding target fea-

tures (target cost) is minimum (optimal correspondence).
• The distance to the neighbors of the corresponding target

feature vector (concatenation cost) is minimum (optimal
naturalness).

tly, these optima do not coincide, and we must get by with
mpromise between both: We search for the minimum of the
hted sum of target and concatenation cost for each source fea-
vector:

=arg min
yM

1

MX
m=1

nX
αS(ym−xm)+(1−α)S(ym−1−ym)

o
. (1)

e, S(w) is the Euclidean distance

S(w) =
√

w′w (2)

0 ≤ α ≤ 1 is a weight influencing the trade-off between target
concatenation cost.
second aforementioned criterion is supposed to select natu-
smooth segments4 from the target feature vector sequence
Since the optimal concatenation we expect is that of vectors

ch are neighbored in the original target speech, ym and ym+1,
regard the concatenation cost of such a vector pair to be zero
er than to be the Euclidean distance according to Eq. 2.
the other hand, the Euclidean distance between two identical
ors is zero, a fact that would support repititions of the same
ors. To avoid this effect that could lead to undesirable voicing
he respective signal section, the concatenation cost between
tical vectors is assigned infinity.
r determining ỹM

1 , conventional voice conversion parameter
ing is performed as discussed in Section 1.

ike text-dependent training based on bilingual speakers (Sec-
2), this time, the joint GMM is already cross-lingual, conse-
tly, there is no language-dependent mismatch between train-

and conversion.

Time Behavior
ough the computational characteristics have not played a role
is study so far, we would like to mention that the discussed

-independent training turns out to be very time-consuming.

or units; that is, where the term unit selection stems from. This
digm is well-known from concatenative speech synthesis where op-
l speech units are selected and concatenated, cf. [13].
authors technique training type (flags) speech quality (MOS) conversion performance (ABX)
Abe et al. [4] codebook mapping text-independent (T2L2) ? fair*
Mashimo et al. [6] linear transformation text-dependent (T0L1) fair* good*
Sündermann et al. [7] VTLN text-independent (T2L2) fair fair

Table 1: Former cross-language voice conversion techniques. The type flags (see Table 2) were introduced to precisely characterize the
underlying training procedure that is important for the target application of voice conversion, cf. Section 1. .............................................
*according to the corresponding intra-lingual system



text flags

T0 text-dependent: parallel training utterances
T1 semi-text-independent: parallel training utterances but

treated as non-parallel
T2 text-independent: non-parallel training utterances

language flags

L0 training and test in the same language
L1 training in one language and test in another language

(requires bilingual speakers)
L2 source and target voice use different languages in train-

ing

Table 2: Type flags for voice conversion training

The structure of Eq. 1 allows for applying dynamic programming
that makes the problem tractable. However, unlike well-known ap-
plications of dynamic programming, e.g. for DTW, in the case of
the unit selection-based training, the search space is considerably
larger: Conventionally, in the former case, the possible succes-
sors of a feature vector yn are limited to the set {yn, yn+1, yn+2},
whereas in the latter case all vectors are allowed. This leads to a
time complexity of O(M · N2).
Let us consider an example: For the male-to-female conversion
described in Section 4, we used about 400s speech data of source
and target speaker, respectively. Taking the different fundamental
frequencies of both speakers into account (or rather: their differ-
ent frame lengths), we had M = 5.7 · 104 and N = 8.4 · 104

vectors. According to the aforementioned complexity, we had to
compute about 4 · 1014 times the expression in the curly braces of
Eq. 1. After perfoming several steps to reduce the complexity5, the
computation still took more than 80 hours on a 3GHz Intel Xeon
processor corresponding to a real time factor of about 730.

4. Evaluation
In this section, we discuss the evaluation of the presented tech-
nique in the framework of the periodical TC-Star evaluation cam-
paigns. The first campaign took place in September 2005, the sec-
ond is currently being performed (March/April 2006).
The evaluation is carried out by the independent research institute
ELDA and concerns all components of the speech-to-speech trans-
lation system introduced in Section 1: speech recognition, ma-
chine translation, speech synthesis, and voice conversion – which
will be focus of the following considerations.

4.1. TC-Star Evaluation Campaign I

This evaluation campaign was limited to intra-lingual voice con-
version; details can be found in [12]. Since test corpus as well as
the metrics for assessing the voice conversion performance were
altered in the second campaign, the first evaluation’s results are
not suitable as baseline.

4.2. TC-Star Evaluation Campaign II

It the second campaign, we participated with both intra-lingual as
well as cross-language voice conversion (for the characteristics re-
fer to Table 3).
As already mentioned in Section 1, we applied pitch-synchronous
signal processing and used LSFs as spectral features. Pitch marks
were determined using the algorithm of Goncharoff and Gries [14].
According to [15], in addition to the feature conversion that is car-
ried out by the linear transformation described in Section 1, we
have to consider the speaker dependence of the underlying resid-
ual. Just applying the converted features to the unchanged source

5by exchanging x
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intra-lingual cross-language
ning type (flag) text-dependent (T0) text-independent (T2)
version type (flag) intra-lingual (L0) cross-language (L2)
rce language English Spanish
et language English English
nment technique DTW unit selection
pling rate 16kHz / 16bit

akers 2 female, 2 male (bilingual professionals).
ning data amount ≈ 400s per speaker and language
h mark extraction
training data automatic, supervised
test data automatic, manually corrected

tures LSF
er 32
M mixtures 4
ariance type diagonal
dual conversion VTLN

e 3: Characteristics of the voice conversion techniques as-
ed in the second TC-Star evaluation campaign. For the training
flags, see Table 2.

uals might lead to a voice that is different from both source
target speaker. The aforementioned publication studies several
niques that successfully change the speaker identity, however,
hese techniques considerably deteriorate the speech quality.
e from our point of view the signal quality was of higher pri-
, we decided to apply VTLN (introduced in Section 2) to the
uals of the source speech, a technique that often is able to es-

ially contribute to change the source speaker identity towards
of the target speaker while barely affecting the speech quality.
onjunction with the linear transformation, we expected a rea-
ble conversion performance [12].
following steps were to further enhance the system’s perfor-
ce:
h tracking. Correct and consistent pitch marks are crucial for
od synthesis based on time domain pitch-synchronous overlap
add, which is the synthesis technique our voice conversion is
d on [16]. Furthermore, already in the training phase, pitch
k errors can lead to a poor estimation of the GMM parame-

Therefore, after automatically determining the pitch marks
eans of the algorithm mentioned in Section 4.2, we selected
those training speech files for the parameter training whose
marks had been reliably determined. For the test speech

, where correct pitch marks are much more important, they
manually corrected.

ing information. According to Ye and Young [2], most of
speaker-dependent information is carried by the voiced signal
s, whereas the unvoiced parts are almost speaker-independent.
sequently, it makes sense to copy the source speech signal in
iced parts and only apply the conversion to voiced sections.

rder to take the potential (but sparse) speaker dependence of
iced sounds into account, we applied VTLN also to unvoiced
ds.

ture dimensionality. The aforementioned issue of residual
iction only emerged because we describe the spectral envelope
speech frame by means of a low-dimensional feature vector.
error we make by considering this envelope being the original
al is the residual which carries the original signal’s spectral
ils and phase information. The better the feature vector repre-
s the original speech frame, the smaller the residual’s contri-
on becomes. This is done by increasing the dimensionality of
feature vector. However, the higher the vector’s dimensional-
s, the more unreliable are the GMM parameters trained on the



MOSQ MOSS

intra-lingual 3.3 2.4
cross-language 3.5 2.0
source voice 4.7 1.6

Table 4: Results of the second TC-Star evaluation campaign: over-
all speech quality and conversion performance

vector sequences. Due to the relatively large amount of training
data available, it was possible to use a vector dimensionality (LSF
order) of 32 without perceptibly affecting the speech quality.

4.3. Evaluation Metrics

The second TC-Star evaluation campaign for voice conversion was
based on the following subjective error measures:
• To assess the overall speech quality, we used the mean opin-
ion score (MOS) [17]. For each speech sample, the subjects were
asked to rate the speech quality on a five-point scale (1 for bad, 2
for poor, 3 for fair, 4 for good, 5 for excellent). The average over
all samples and participants is referred to as MOSQ.
• To evaluate the conversion performance, for each conversion
method and gender combination, the subjects listened to speech
sample pairs from the converted and the target voice and were to
rate their similarity on a five-point scale (1 for different to 5 for
identical). The average over all samples and participants is the
mean opinion score MOSS .
4.4. Corpus
The voice conversion corpus consists of recordings of four profes-
sional bilingual speakers (two female and two male). They uttered
about 200 Spanish and 160 British English phrases (about 900s
and 800s of speech) that were recorded using a high-quality dis-
tant microphone, a close-talk microphone and a Laryngograph at
96kHz, 24bit sampling rate (for the experiments, a down-sampled
version was used, cf. Table 3). From this corpus, 10 utterances
were selected for testing, the remaining data served for training.
For intra-lingual voice conversion, the training data was based on
the English recordings only, for cross-language voice conversion,
the source speaker data was English, that of the target Spanish. For
details of the evaluation procedure refer to [18].

4.5. Results

In Table 4, we compare intra-lingual with cross-language voice
conversion in terms of speech quality and conversion performance.
The results are based on the opinion of 9 subjects whose mother
tongue is British English6. As standard of comparison, we also
give results of the unconverted (source) voice. The latter features
the highest achievable speech quality but, at the same time, is a
lower bound for the similarity to the target.

5. Interpretation
5.1. Speech Quality

The speech quality of both intra-lingual and cross-language voice
conversion is between good and fair; the TC-Star goal of at least
MOSQ = 3 was fulfilled [19].

5.2. Intra-Lingual vs. Cross-Language
Interestingly, the speech quality of text-independent cross-
language voice conversion outperformed that of the text-dependent
intra-lingual type. On the other hand, intra-lingual achieved a
higher similarity score than cross-language voice conversion. Both
effects might be attributed to the nature of the text-independent
training method:
The cost minimization described in Eq. 1 encourages low target
costs, i.e. low distances between source and corresponding target
vector. The more training data is available, the smaller become

6The evaluation’s final results will be based on 20 subjects.
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e distances. For an infinite amount of training data, we expect
to tend to zero7. However, the more similar corresponding

ce and target vectors are, the less speaker-dependent informa-
can be trained from them. For the limit case, where we have
valent source and target vectors, we get zero vectors and iden-
matrices as parameters of the linear transformation. In this
, the converted feature vectors were equivalent to the source
ors, i.e., we would produce the source speech as output.
consideration suggests to carefully select amount and nature

he training data for the text-independent training method to
e sure that as much as possible speaker-dependent information
be learned from the data.
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