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Abstract

Due to the physiological constraints of articulatory motion the
speech apparatus has limited degrees of freedom. As a result, the
range of speech sounds a human is capable of producing may lie
on a low dimensional submanifold of the high dimensional space
of all possible sounds. In this study a number of manifold learning
algorithms are applied to speech data in an effort to extract useful
low dimensional structure from the high dimensional speech sig-
nal. The ability of these manifold learning algorithms to separate
vowels in a low dimensional space is evaluated and compared to a
classical linear dimensionality reduction method. Results indicate
that manifold learning algorithms outperform classical methods in
low dimensions and are capable of discovering useful manifold
structure in speech data.
Index Terms: speech analysis, manifold learning, dimensionality
reduction, classification.

1. Introduction
In speech processing, the speech signal is often modeled by rela-
tively high dimensional features such as discrete Fourier transform
(DFT) or linear prediction (LP) coefficients. However due to phys-
iological constraints the speech production apparatus has relatively
few degrees of freedom. Thus, humans are only capable of gen-
erating a limited range of sounds which occupy a confined region
of the acoustic space. In this case, we can imagine the speech data
as lying on or near a manifold embedded in the high dimensional
acoustic space. It has been proposed that speech intrinsically lies
on some such low dimensional manifold [1, 2].

It is desirable to reduce the dimensionality of the speech sig-
nal prior to processing. Traditionally, signal processing techniques
have been applied to speech in order to reduce the dimensional-
ity by extracting information that is judged to capture information
about the energy and spectral characteristics of the signal. The
extracted information is often transformed according to some per-
ceptually motivated scheme to better model the speech auditory
path; for example, Mel-frequency cepstral coefficients (MFCC)
and perceptual linear prediction (PLP) parameters. These acousti-
cally and perceptually motivated representations are based on our
knowledge and assumptions of speech production and perception,
and as such do not attempt to automatically discover the underly-
ing low dimensional structure of speech.

A number of automatic dimensionality reduction algorithms,
driven by the statistics of the data, have been proposed that aim
to extract a meaningful low dimensional representation of high di-
mensional data. Applications of these dimensionality reduction
algorithms include data compression, visualisation, noise reduc-
tion, and feature extraction. Dimensionality reduction methods

can
ods
near
mos
the
men
wid
form
adap

of s
emb
sion
ture
of m
redu
com
succ
and
tion

anal
spac
nitio
in th
that
sual
pho

loca
(Iso
abil
with
is a
[3].
ifold
are
Sec
fold
pres

2.1.

LLE
low
cipl
the

INTERSPEECH 2006 - ICSLP

2506
ning for Speech Analysis

n McKenna

uting
ublin 9, Ireland
ting.dcu.ie

be categorised as linear or nonlinear methods. Linear meth-
are limited to discovering the structure of data lying on or
a linear subspace of the high dimensional input space. The

t widely used linear dimensionality reduction methods include
classic principal component analysis (PCA) [3] and multidi-
sional scaling (MDS). These methods have been applied to a
e range of speech processing problems including, feature trans-
ation for improved speech recognition performance, speaker
tation, data compaction, and speech analysis.
Jansen and Niyogi [2] have recently shown that certain classes
peech sounds lie on a low dimensional manifold nonlinearly
edded in the high dimensional acoustic space. A low dimen-
al submanifold such as this may have a highly nonlinear struc-
that linear methods would fail to discover. Recently, a number
anifold learning (also referred to as nonlinear dimensionality
ction) algorithms have been proposed [4, 5, 6] which over-
e the limitations of linear methods. These methods have been
essfully applied to a number of benchmark manifold problems
have also proved useful in several image processing applica-
s.
Manifold learning algorithms may also be useful in speech
ysis; for example, to project speech into a low dimensional
e for visualisation or extract features for use in speech recog-
n. However there has been relatively little research conducted
is area to date. A number of exploratory studies have shown
manifold learning algorithms can be used to successfully vi-
ise speech data in a low dimensional space [7, 6, 8] and for
ne classification [9].
In this paper, we apply several manifold learning algorithms—
lly linear embedding (LLE) [4, 10], isometric feature mapping
map) [5], and Laplacian eigenmaps [6]—to speech data. The
ity of these algorithms to discover low dimensional structure
in speech data is evaluated and compared. Their performance

lso contrasted with that of the classical, linear, PCA method
This paper is structured as follows. In Section 2, the man-
learning algorithms LLE, Isomap and Laplacian eigenmaps

described. The corpus, experiments and results are detailed in
tion 3. Section 4 discusses a number of limitations of the mani-
learning algorithms. Finally, in Section 5, the conclusions are
ented.

2. Manifold learning algorithms
Locally linear embedding

[4, 10] is an unsupervised learning algorithm that computes
dimensional embeddings of high dimensional data. The prin-
e of LLE is to compute a low dimensional embedding with
property that nearby points in the high dimensional space re-
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main nearby and similarly co-located with respect to one another
in the low dimensional space. In other words, the embedding is
optimised to preserve local neighbourhoods.

The LLE algorithm can be summarised in three steps:

1. For each data point Xi, compute its k nearest neighbours
(based on Euclidean distance or some other appropriate def-
inition of ‘nearness’).

2. Compute weights Wij that best reconstruct each data point
Xi from its neighbours, minimising the reconstruction error
E:

E(W ) =
i

Xi −
j

WijXj

2

(1)

3. Compute the low dimensional embeddings Yi, best recon-
structed by the weights Wij , minimising the cost function
Ω:

Ω(W ) =
i

Yi −
j

WijYj

2

(2)

In step 2, the reconstruction error is minimised subject to two con-
straints: first, that each input is reconstructed only from its nearest
neighbours, or Wij = 0 if Xi is not a neighbour of Xj ; second,
that the reconstruction weights for each data point sum to one, or

j Wij = 1 ∀i. The optimum weights for each input can be com-
puted efficiently by solving a constrained least squares problem.

The cost function in step 3 is also based on locally linear re-
construction errors, but here the weights Wij are kept fixed while
optimising the outputs Yi. The embedding cost function in Equa-
tion (2) is a quadratic function in Yi. The minimisation is per-
formed subject to constraints that the outputs are centered and
have unit covariance. The cost function has a unique global min-
imum solution for the outputs Yi. This is the result returned by
LLE as the low dimensional embedding of the high dimensional
data points Xi. The embedding cost function can be minimised by
solving a sparse N × N eigenvalue problem, as detailed in [10].

2.2. Isomap

The Isomap algorithm [5] offers a differently motivated approach
to manifold learning. Isomap is a nonlinear generalisation of MDS
that seeks a mapping from high dimensional space X to low di-
mensional feature space Y that preserves geodesic distances be-
tween pairs of data points—that is, distances on the manifold from
which the data is sampled.

While Isomap and LLE have similar aims, Isomap is based
on a different principle than LLE. In particular, Isomap attempts
to preserve the global geometric properties of the manifold while
LLE attempts to preserve the local geometric properties of the
manifold.

As with LLE, the Isomap algorithm consists of three steps:

1. Construct a neighbourhood graph - Determine which points
are neighbours on the manifold based on distances d(i, j)
between pairs of points i, j in the input space (as in step
1 of LLE). These neighbourhood relations are then repre-
sented as a weighted graph over the data points with edges
of weight d(i, j) between neighbouring points.

2. Compute the shortest path between all pairs of points
among only those paths that connect nearest neighbours us-
ing a technique such as Dijkstra’s algorithm.

3. Apply classical MDS to embed the data in a d-dimensional
Euclidean space so as to preserve these geodesic distances.
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Laplacian eigenmaps

principle of the Laplacian eigenmaps algorithm is similar to
of LLE, to compute a low dimensional representation of high
ensional data that faithfully preserves proximity relations. It
originally motivated by the way that heat transmits from one
t to another point. The algorithm is structured as follows:

1. Construct a neighbourhood graph as in Isomap.

2. Assign weights Wij to the edges of the graph. These
weights are typically constant, e.g. Wij = 1/k, or ex-

ponentially decaying, e.g. Wij = e(−‖Xi−Xj‖
2/σ), where

σ is a scaling parameter.

3. Let θ denote the diagonal weight matrix with elements
θii = j Wij . The embeddings Y are computed by mini-
mizing the cost function:

ε =
ij

Wij‖Yi − Yj‖
2

θiiθjj

(3)

outputs are constrained as in LLE. This cost function incurs a
y penalty if neighbouring high dimensional points are mapped
part.

3. Experiments
Data

speech data used in this study was taken from the Boston Uni-
ity radio corpus [11]. This corpus provides radio news data,
rded by four male and three female radio announcers. Speech
recorded at a sampling frequency of 16 kHz. For these exper-

nts, data was taken from two female (F1A and F2B) and two
e (M1B and M2B) speakers; this provided a large amount of
n speech data from both genders.
Based on the phonetic transcriptions provided, all tokens of
bset of phones were extracted from the corpus. The phones
acted can be grouped into several broad phone classes and la-
d using TIMIT phone symbols: vowels (‘aa’, ‘ae’, ‘uw’, ‘iy’,
), fricatives (‘s’, ‘sh’), stops (‘p’, ‘t’, ‘k’), nasals (‘m’, ‘n’)
, semivowels and glides (‘l’, ‘y’). One 40 ms frame was ex-
ted from the middle of each vowel (tokens of duration less than

s were discarded). The raw speech frames were amplitude
alised, preemphasized with the filter H(z) = 1 − 0.98z−1

Hamming windowed. Following this preprocessing, DFT fea-
vectors were computed for each frame. These features were
converted to log magnitude spectra.

Vowel separability analysis

tokens of each of the five vowels listed above were randomly
cted for each speaker (i.e. 750 tokens per speaker). The re-
ing 3000 log magnitude spectra feature vectors were provided
put data to the LLE, Isomap, Laplacian eigenmaps and PCA
rithms. The number of nearest neighbours, k, used in the man-
learning algorithms was set equal to 12. Embedding spaces of

ensionality 1–15 were generated. The two dimensional embed-
s of the vowels ‘aa’, ‘uw’ and ‘iy’ produced by each method

shown in Fig. 1, the vowels ‘ae’ and ‘eh’ are omitted for visual
ity. All three manifold learning algorithms were found to be
ul for visualisation of the vowel data with individual vowels
tered in each embedding space. PCA also produces recognis-
vowel clusters, in contrast to previously reported findings [7].
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Figure 1: 600 tokens of each the vowels ‘aa’, ‘uw’ and ‘iy’ within
the two dimensional vowel space produced by LLE, Isomap, Lapla-
cian eigenmaps and PCA.

However they have a greater degree of overlap compared to the
embeddings produced using manifold learning techniques.

In order to formally evaluate the performance of each algo-
rithm, a measure of vowel separability within the resulting low
dimensional spaces was computed. The Bhattacharyya distance
[12], measures the separability of two distributions and was used
as a metric in this study. The Bhattacharyya distance between two
distributions with mean vectors, m1 and m2, and covariance ma-
trices, C1 and C2, can be computed as follows:

Dbhat =
1

8
(m2 − m1)

T C1 + C2

2

−1

(m2 − m1)

+
1

2
ln

C1+C2

2

|C1| |C2|
(4)

The Bhattacharyya distance was computed for all possible
vowel pair combinations. This was performed in each of the 1–
15 dimensional spaces produced by each algorithm. The rank-
ing of both algorithm performance and vowel pairs according to
Bhattacharyya distance was consistent across each of the 1–15 di-
mensional spaces. The results in two dimensional space are given
in Fig. 2. In general the manifold learning algorithms outperform
PCA, with LLE yielding the best vowel separability for 70% of the
vowel pairs. Also, the separability of each vowel pair is shown to
correspond to the relative position of each vowel in formant space.
Vowels occupying a small region of formant space, i.e. ‘aa’, ‘ae’
and ‘eh’, have low Bhattacharyya distances between them.

3.3. Phone classification

To evaluate the usefulness of each manifold learning method, the
low dimensional embeddings produced above were used as feature
vectors in a vowel classification experiment. The training set con-
sisted of 400 labeled feature vectors randomly chosen from each
vowel, with the remaining 200 feature vectors per vowel used as
test data. The embedding dimension d ranged from 1–15. A K-
nearest-neighbour (K-NN) classifier, with K = 2, was imple-
mented and used to assign each test feature vector to a vowel. This
procedure was also used to classify tokens into phone classes. In
this experiment, 1000 tokens were randomly selected from each
of the five phone classes described in Section 3.1 and low dimen-
sional embeddings computed as above. A K-NN classifier was
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re 2: Vowel pair separability in the the two dimensional em-
ding space produced by PCA, Laplacian eigenmaps, LLE and

ap.

ed on 2500 labeled feature vectors, 500 randomly chosen from
phone class, and tested on the remaining 2500 feature vectors.

h experiment was repeated using a Gaussian mixture model
d classifier with three mixture components. The results were
d to be consistent with those of K-NN.
The results of the K-NN classification experiments are shown
ig. 3. For low dimensions the manifold learning algorithms
erform PCA. These results suggest the manifold learning tech-
es are successful at revealing low dimensional structure in
ch data. Note, however that a crossover in error rates occurs

he number of dimensions increases. It appears that after this
t LLE and Laplacian eigenmaps cannot extract further infor-

ion from their locally linear neighbourhoods. In contrast, the
and Isomap features outperform LLE and Laplacian eigen-

s features for higher dimensions (d > 4).
As a baseline, both the vowel and phone class classification
riments were also performed using MFCC feature vectors, of
r 12, as input. The resulting test error rate using a K-NN
sifier is 25.7% for vowels and 31% for phone classes. These
eptually motivated features have been widely shown to be use-

in speech recognition and, as expected, outperform the other
ures. Further investigation is planned into the possible benefit
sing perceptual weighting, such as that used in MFCC, as a
rocessing step prior to manifold learning.

Pitch manifold

ddition to the phone separability experiments, LLE, Isomap,
lacian eigenmaps and PCA were used to analyse data from
vidual vowels. For each vowel, 500 tokens were randomly
cted. The equivalent DFT features were then reduced to
dimensional embedding space using LLE, Isomap, Laplacian
nmaps and PCA. The manifold learning algorithms each used
12 nearest neighbours. A visual inspection of the two dimen-

al embeddings produced by the manifold learning algorithms
d a distinct pattern within the data. The distribution of tokens
in the embedding space was found to correspond to the pitch

he token. An example of this is shown in Fig. 4. It can be
that pitch is consistently distributed in the embedding space
uced by LLE. Moving clockwise from the top-right of Fig. 4,

h can be seen to increase. Isomap and Laplacian eigenmaps
e found to produce similar ‘pitch manifolds’, however the LLE
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Figure 3: Comparison of Isomap, LLE, Laplacian eigenmaps and
PCA features for K-NN classification of vowels (top) and phone
classes (bottom). The plots show error rates on the test set.

embeddings revealed a more consistent pitch structure. The two
dimensional representation resulting from PCA was found to yield
relatively limited and inconsistent pitch structure. This suggests
that vowels sounds of varying pitch may lie on a submanifold non-
linearly embedded in acoustic space.

4. Limitations
The manifold learning algorithms discussed above have a number
of properties that may limit their usefulness in speech processing
applications. Firstly, these algorithms operate in batch mode. They
do not provide a means of mapping new points between the high
and low dimensional spaces, without re-running the algorithm with
the new points added into the original data set. This would be a
significant barrier in speech recognition applications. A number
of approaches have been proposed [10, 13] to overcome this lim-
itation but they have yet to be tested on speech data. Secondly,
manifold learning algorithms do not scale well to large data sets
(N > 10000). This is due to computational bottlenecks in the
Isomap algorithm and difficulties resolving eigenvalues in the LLE
and Laplacian eigenmaps methods.

5. Conclusions
Manifold learning algorithms have been found to be useful in
speech analysis. These algorithms are capable of producing mean-
ingful low dimensional representations of speech data. Such rep-
resentations are useful in speech analysis as they reveal informa-
tion that may relate to formant positions and place of articulation.
A space in which different phones are well separated would also,
clearly, be beneficial in ASR. While these algorithms need fur-
ther development before they can perform as well as perceptually
motivated features, such as MFCCs, they were found to be useful
as a front-end for statistical recognition of speech sounds, outper-
forming PCA in very low dimensions. These algorithms have also
been shown to produce embeddings which reveal other potentially
interesting information, such as pitch.
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