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Abstract

This paper proposes a band-weight estimation method using Lin-
ear Discriminant Analysis (LDA) for multi-band automatic speech
recognition (ASR). In our scheme, a spectral domain feature,
SPEC, is modeled using a multi-stream HMM technique. This
paper also proposes the use of Output Likelihood Normaliza-
tion (OLN) in combination with the LDA-based weight-estimation
method in order to adjust the relative weights of individual word
(phoneme) models. Experiments were conducted using Japanese
connected digit speech in various kinds of noise and SNR con-
ditions. Experimental results show that the proposed LDA-based
method is effective in all noise conditions. The results also confirm
that the combination of OLN with the LDA-based method further
increases noise robustness of the multi-band ASR. Furthermore,
comparing the results of LDA applied to the SPEC and MFCC
features respectively, it can be seen that greater performance gains
are achieved with the former case than with the latter; this means
that SPEC within a multi-band speech recognition framework can
more effectively deal with the noise contamination than MFCC.
Index Terms: multi-band speech recognition, band-weight esti-
mation, linear discriminant analysis (LDA), spectral domain fea-
ture.

1. Introduction
In most state-of-the-art speech recognition systems, speech is con-
verted into a time-signal of the MFCC vector. However, this
method tends to spread any noise the system encounters across all
the MFCC coefficients, even when the contaminating noise is con-
fined to a narrow frequency band. This shortcoming makes it sub-
stantially more difficult to develop effective methods to eliminate
the effects of noise contamination. The application of frequency-
band dependent processes to a multi-band ASR approach is ex-
pected to be more effective for developing noise-robust ASR sys-
tems [1, 2, 3, 4, 5].

For multi-band ASR, accurately estimating sub-band weights
according to the reliability of individual spectral bands is one of
the key issues. In previous work, estimated signal-to-noise ra-
tio (SNR) for each band [1, 2, 3], entropy for each band [3], an
output of multi-layer perceptron [4], or the maximum likelihood
(ML) criterion [6] was used for determining the sub-band weights.
In this paper we propose the use of Linear Discriminant Analysis
(LDA) as a new and effective means for estimating the reliability
weights and evaluate the feasibility of this approach in the frame-
work of multi-band ASR in various noise environments. We also
apply Output Likelihood Normalization (OLN) [7], which was
originally proposed as a weight-normalization method for audio-
visual speech recognition, to our system and evaluate its effects
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n combined with the LDA-based weight-estimation method.
This paper is organized as follows. Section 2 explains the
tral domain feature used in our multi-band recognition sys-

In Section 3, our multi-band recognition scheme using the
ti-stream HMM technique is explained. Section 4 proposes a
ht-estimation method using the LDA and combination of the
-based weight-estimation method with the OLN method. Ex-

mental results are presented in Section 5, and Section 6 con-
es this paper.

2. Spectral domain features (SPEC)
the purpose of conducting multi-band speech recognition,
ectral domain feature is used, which will be referred to as
EC” hereafter. Although, unlike the MFCC, the SPEC is nor-
zed only in the spectral domain, both features are theoreti-
similar. Figures 1 and 2 show the feature extraction flows of
C and SPEC, respectively. Below is a series of simple de-
tions, which illustrates the differences between the two fea-

s.

Mean log-energy subtraction

ectral bias component (C0 in the MFCC domain) is removed.
e the absolute value of the energy is changeable depending on
y factors including recording conditions, it needs to be nor-
zed.

Spectrum peak emphasis

e spectral peaks convey important information for speech
gnition, the liftering process for MFCC is effective for rais-
the recognition performance. For extracting SPEC, the log-
trum is passed through an FIR filter, with the formula de-
ed below, in order to emphasize its spectral peaks and valleys.

H(z) = 1 − pz−1 (1)

Log-spectral mean subtraction

time-average of the log-spectrum is subtracted from the log-
trum of each frame. This process corresponds to Cepstrum
n Subtraction (CMS) in the cepstral domain. Like CMS, this
ess is effective for normalizing spectral variations due to trans-
ion characteristics and voice individuality.

3. Multi-band speech recognition
ti-band ASR is a technique which uses multiple frequency
s for recognition. Multi-stream HMMs provide a means of ac-
plishing weighting for each band. Although otherwise similar
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Figure 1: Flow for the MFCC extraction process.

to a standard HMM, log-likelihoods for multi-stream HMMs are
calculated in a slightly different manner. When a t-th frame value
ot is observed, the log-likelihood for the multi-stream HMM,
b(ot), is calculated as the weighted sum of the likelihood of each
stream, b(ost), as indicated by the formula below:

b(ot) =
S

s=1

λs · b(ost) (2)

where S is the number of streams and λs represents the weight of
an individual stream s.

In order to weight individual bands of SPEC, each dimension
of SPEC is considered as a separate stream and thus fed as an input
to the multi-stream HMM. This is made possible by the paradigm
of the multi-stream HMM. Although a feature vector for recogni-
tion actually includes ΔSPEC and Δlog power components, these
Δ terms are treated as a single vector stream.

4. Likelihood weight estimation
Linear Discriminant Analysis (LDA) is used to estimate the rela-
tive weights of individual streams. In addition, Output Likelihood
Normalization (OLN) is used in order to adjust the relative weights
for individual models. The weight for the stream containing the Δ
terms is fixed to 1.0.

4.1. Stream weight estimation using Linear Discriminant
Analysis (LDA)

As discussed above, the log-likelihood value is calculated as the
linear sum of the weighted log-likelihood of all individual streams.
Since a discriminant function obtained using the LDA has the form
of a linear sum, the LDA can be directly used to estimate the
stream weights. This maximizes the system’s ability to discrim-
inate correct and incorrect input words, and thereby estimates the
reliability of each individual frequency band.

First forced alignment is carried out with the training data.
Word (phoneme) strings w1, w2, . . . , wN (N denotes the number
of phoneme strings) and their corresponding labels are prepared
from the training data. Word (phoneme) labeling is carried out
with an automatic labeling process before likelihood estimation.
Next, the feature vector own , corresponding to word (phoneme)
wn, is fed as input to all unweighted models mv (v = 1, 2, . . . , V ,
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Figure 2: Flow for the SPEC extraction process.

re V represents the total number of different models). For each
m s, frame-averaged log-likelihoods are plotted as the coor-
te xs (in an s dimensional space). After plotting all wn-mv

binations, LDA is used to obtain a linear discriminant function
h is then applied to separate the correct (wn = mv) from the
rrect (wn �= mv) distributions. The obtained linear discrimi-
function is:

a0 +
S

s=1

asxs = 0. (3)

n the LDA produces negative coefficients, which are undesir-
for our purpose, they are converted to 0.

a′
i =

ai (ai ≥ 0)
0 otherwise

(4)

lly, the mean value of the weighting coefficient, λs, is normal-
using the following equation:

λs = S · a′
i

j

a′
j

. (5)

Word model weight adjustment using Output Likelihood
malization (OLN)

ause these stated likelihoods tend to vary widely in low SNR
ronments, and since this can be a major factor in bringing
n recognition quality, reducing this variation affords the pos-
ity of a considerable improvement in performance. In order
elp minimize the variation, in OLN, estimation data is used
alculate the average likelihood of unit segments which corre-
d to individual models, and the inverse of this average is then
to weight the given model [7]:

b̄mv =

N

n=1

bmv (own)/TA (6)

re bmv (own) represents the log-likelihood of a given fea-
vector own , corresponding to word (phoneme) wn, and word
nene) model mv . b̄mv thus represents the average log-
ihood for model mv , N represents the number of segmented



features, and TA represents the total frames for said features. The
inverse of b̄mv is used as the model weight, after normalizing the
mean weight to 1.0. The final model weight is thus calculated as
follows:

λmv = V · 1/b̄mv

V

v=1

1/b̄mv

(7)

where V represents the number of models. In order to incorporate
the case where both stream weights and model weights are consid-
ered simultaneously, a combined, two-dimensional weight λs,mv

comprising both s and mv is constructed:

λs,mv = λs · λmv . (8)

5. Experiments
5.1. Speech data

The speech data used for training and recognition consisted of
Japanese continuous digit utterances from 11 male speakers,
recorded in a clean environment. Each speaker recorded a series
of 210 digit strings, each consisting of 2-8 digits, resulting in a to-
tal 1050 digit-utterances per speaker. The “leave one out” method
was used; that is, the clean recorded utterances of 10 speakers were
used for training, and the utterances from the remaining speaker
were used for testing. This process was carried out 11 times, and
the recognition rates for the 11 experiments were averaged.

The elevator hall noise, train station noise, and in-car noise
from the noise database distributed by the Japan Electronic Indus-
try Development Association (JEIDA) [8] were used as the source
of noise contamination for the trials. The former two noises can be
classified as “babble noises”. The noises were numerically added
to testing data at respective SNRs of 5, 10, and 20dB. All wave-
forms were sampled at 16kHz with 16bit resolution.

In order to investigate baseline performance of the proposed
method, data for the weight estimation were created by adding
noise signals at the same conditions as testing to the clean training
data. Phoneme labeling information used for the estimation was
obtained via Viterbi alignment using correct phoneme sequences
and the original clean data.

5.2. Acoustic feature vectors

The SPEC-based acoustic feature vector consisted of 27 dimen-
sions, comprising 13 SPEC, 13 Δ SPEC and one Δ log power.
Since the number of frequency bands was set at 13, the normaliza-
tion processes were applied to the 13-dimensional spectral vectors.
Acoustic analysis was conducted with 25ms frame windows and a
frame shift of 10ms. Log-spectral mean subtraction was applied
to each speech file containing 10 connected digit utterances by a
single speaker.

5.3. Modeling

Three-state triphone HMMs were first trained as single stream
HMMs by using HTK [9]; that is, all streams were jointly trained.
The observation probability density for each state was represented
by 4-mixture Gaussian distributions. A diagonal covariance matrix
was used for each distribution.

Then, all feature vectors in the HMMs were separated into 14
vector streams as shown in Figure 3. All the initial stream weights
were set to 1.0.
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13 SPEC 13   SPECΔ Δ logPow

14 streams

re 3: Separation of a feature vector for building multi-stream
Ms. A feature vector of 13 SPEC was separated into 13
ms, and a vector consisting of 13 Δ SPEC and Δ log power
treated as a single stream.

Experimental results

r different likelihood weight estimation methods were evalu-
. In the first experiment (NONE), the original model, with
ikelihood weights initialized to 1.0, was used; no estimation
djustment method was applied in this case. In the second
riment (LDA), weights were estimated exclusively with Lin-
iscriminant Analysis; in the third experiment (OLN), weight

stment between triphone HMMs was conducted exclusively
Output Likelihood Normalization; in the fourth experiment

A+OLN), LDA was used to obtain preliminary weight estima-
s, and weight adjustment across HMMs was then carried out
OLN. In these experiments, both LDA and OLN were applied
e word level.
Since the recognition task targeted continuous digit utterances,
twork grammar, consisting of every combination of digits 0-
as used for language modeling. The most salient insertion
lty was experimentally chosen for each experiment.
The digit recognition results for these four methods, as ap-

to the SPEC approach, can be seen in Table 1. As can be
from the results, LDA proves an effective means of estimat-

likelihood weights; the digit accuracies are highly improved
DA from the baseline results (NONE) in all noise conditions.
number of spectral bands, for which negative coefficients were
uced by LDA and converted to 0 using Eq. (4), varied accord-

to noise conditions from 0 (clean and in-car noise at 20dB) to
(station noise at 5dB) in average. The effectiveness is also ob-
d when applying OLN-based weight adjustment. The results
confirm that both LDA and OLN methods applied in concert
ore effective than either one alone.

As a supplementary experiment, we compared the relative ro-
ness of the SPEC-based approach with the MFCC-based ap-
ch for confirming the effectiveness of spectral-domain fea-
s. The MFCC-based acoustic vector consisted of 25 dimen-
s, and comprised 12 MFCC, 12 Δ MFCC, and one Δ log
er. Both the SPEC and MFCC-based acoustic feature vectors

the same freedom of 25 dimensions after normalization. In
MFCC case, the corresponding multi-stream system, like the
C-based recognition scheme, Δ terms were treated as a single
or stream and not used for weight estimation. Figure 4 shows
igit accuracies for MFCC-based multi-stream speech recogni-
and SPEC-based multi-band speech recognition when apply-

the LDA-based weight-estimation method. Results by MFCC-
d recognition without any weighting are also shown in the fig-
By comparing these results with those obtained by weighted
C, it can be seen that the LDA-based weighting is also useful
FCC. However, by comparing the results by weighted MFCC

weighted SPEC, it can be seen that greater performance gains
achieved with the SPEC-based features than with the MFCC-
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based features in all noise conditions. This fact bears out our hy-
pothesis with respect to the utility of controlling the spread of noise
contamination across frequency bands.

6. Conclusions

This paper proposed the use of Linear Discriminant Analysis
(LDA) for obtaining favorable likelihood weights in the context
of spectral-based multi-band speech recognition. Experimental re-
sults using connected digit speech recognition show that the pro-
posed LDA-based weight-estimation method is effective in vari-
ous noise conditions. It was also confirmed that the combination
of Output Likelihood Normalization (OLN) with the LDA-based
method further increases noise robustness. We further showed that
within the context of a multi-band approach, the proposed method
affords greater gains in noise robustness to spectral (SPEC), rather
than cepstral (MFCC) based approaches.

The current experiment was conducted with explicit knowl-
edge about the SNR values, and phoneme labeling for the esti-
mation data, and this being a success, the next step is to prove
the feasibility of our approach in a real-world setting, where these
variables would not be explicitly available to the system. It is nec-
essary to confirm the utility of incorporating spectral subtraction,
noise adaptation techniques such as MLLR, or the multi-condition
training into the current approach. Finally, it is also necessary
to compare the performance of the proposed method with other
multi-band ASR approaches.
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Table 1: Comparison of digit accuracies (%) for four kinds of weight-estimation methods (NONE, LDA, OLN, and LDA+OLN) in various
noise conditions. These methods were applied to the SPEC-based multi-band speech recognition.

method clean
elevator hall noise train station noise in-car noise

20dB 10dB 5dB 20dB 10dB 5dB 20dB 10dB 5dB
NONE 99.6 91.4 51.0 30.5 88.4 36.1 23.2 98.9 83.0 64.3
LDA 99.3 94.6 59.9 39.3 92.7 52.7 33.7 99.2 94.9 84.2
OLN 99.6 93.1 61.1 39.7 91.0 51.3 32.6 99.1 95.3 84.9

LDA+OLN 99.2 94.7 64.8 41.4 93.3 55.8 35.6 99.0 95.4 87.4

clean 20dB 10dB 5dB 20dB 10dB 5dB 20dB 10dB 5dB
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Figure 4: Comparison of digit accuracies by MFCC without weighting, MFCC with LDA-based weighting, and SPEC with LDA-based
weighting.
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