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Abstract
The performance of voice conversion has been considerably im-
proved through statistical modeling of spectral sequences. How-
ever, the converted speech still contains traces of artificial sounds.
To alleviate this, it is necessary to statistically model a source se-
quence as well as a spectral sequence. In this paper, we intro-
duce STRAIGHT mixed excitation to a framework of the voice
conversion based on a Gaussian Mixture Model (GMM) on joint
probability density of source and target features. We convert both
spectral and source feature sequences based on Maximum Like-
lihood Estimation (MLE). Objective and subjective evaluation re-
sults demonstrate that the proposed source conversion produces
strong improvements in both the converted speech quality and the
conversion accuracy for speaker individuality.
Index Terms: Speech synthesis, Voice conversion, Gaussian mix-
ture model, STRAIGHT, Mixed excitation

1. Introduction
Voice conversion techniques can convert the speech of a certain
speaker to that of an another speaker. This technique can mod-
ify speech features based on conversion rules extracted from a
small amount of training data. One typical application of voice
conversion is speaker conversion [1], and this application can
be extended to cross-language speaker conversion [2][3]. Cross-
language speaker conversion is a technique that makes it possible
for us to speak any language with own voice.

Although progress in research on statistical modeling of spec-
tral sequences has improved the performance of voice conver-
sion techniques, artificial sound is still evident in the converted
speech. To alleviate the artificial sound, it is necessary to statisti-
cally model a source sequence as well as a spectral sequence.

Several researchers have proposed the source conversion
methods such as the residual codebook [4], residual selec-
tion [5][6], and phase prediction [5]. The residual codebook
uses speech coders with a speaker-dependent excitation codebook.
Residual selection is a refinement of the residual codebook. This
method selects appropriate residuals from a database extracted
from the target speaker’s training data. For phase prediction, the
required phases are obtained from the predicted waveform shapes
of converted spectra.

In our research, the STRAIGHT mixed excitation is used as
our source model. STRAIGHT [7] is a high-quality vocoder.
Advantages of STRAIGHT mixed excitation are that (1) the ex-
tracted features are statistically modeled in the same manner as
that for spectral modeling, and (2) robust feature extraction is pos-
sible without pitch marks because of not using phase information.
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source model is also used in the Nitech HTS system [10].
is paper, we introduce STRAIGHT mixed excitation to max-

m likelihood voice conversion based on a Gaussian Mixture
el (GMM) [8]. We convert both spectral and source feature
ences based on Maximum Likelihood Estimation (MLE). The
osed conversion’s effectiveness is demonstrated through ob-
ve and subjective evaluations.
The paper is organized as follows. In Section 2, we describe
AIGHT mixed excitation. In Section 3, the MLE-based spec-
conversion is briefly explained, and in Section 4, we evaluate
xperimental results. Finally, we summarize this paper in Sec-
5.

2. STRAIGHT Mixed Excitation
mixed excitation using STRAIGHT [7] is defined as the

uency-dependent weighted sum of white noise and a pulse
with phase manipulation. The weight is determined based

n aperiodic component in each frequency bin [9]. Figure 1
s a process for designing the STRAIGHT mixed excitation.

Aperiodic Component Analysis [9]

re 2 depicts aperiodic component extraction from a liftered
er spectrum remaining the periodicity. The aperiodic compo-
is calculated as a subtraction of an upper spectral envelope
a lower spectral envelope, where the upper one shows peri-

components and the lower one represents noise components.
ause the subtracted value should be less than 0 dB, the range
e aperiodic component is between 0 and 1. In the figure, ape-

icity is large when the lower envelope is close to the upper
Figure 3 shows a normalized frequency distribution of ape-

ic components in each frequency band. There is a noticeable
ency that periodicity is dominant in the lower frequency bands

Weighting

Mixed 
excitation

Aperiodic 
factor

Mapping functionF0

lse train with 
se manipulation

White noise
signal

Weighting

Weighting

Mixed 
excitation

Aperiodic 
factor

Mapping functionF0

lse train with 
se manipulation

White noise
signal

Weighting

igure 1: Design process for STRAIGHT mixed excitation.
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Figure 2: Aperiodic component extraction from liftered power
spectrum keeping periodicity.
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Figure 3: Normalized frequency distribution of aperiodic compo-
nent on each frequency band.

and that aperiodicity is dominant in the higher ones.

2.2. Design of Excitation

The aperiodic component at each frequency bin is converted to the
weight for a noise signal used in the mixed excitation as follows :

s (af ) =
1

1 + exp{−α (af − 0.25)} , (1)

W (af ) =
s (af ) − s (0)

s (1) − s (0)
, (2)

where af denotes the aperiodic component at each frequency bin
and W (af ) is a mapping function. This mapping function varies
according to the mapping parameter α as shown in Figure 4. As
the mapping component α is larger, the aperiodic component is
mapped onto the larger weight.

The mixed excitation is defined as follows:

S (f ) =

q
1 − W (af )2 eP (f ) + W (af ) N (f ) , (3)

where eP (f ) denotes a pulse train with phase manipulation [7], and
N (f ) denotes a white noise signal.
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re 4: Mapping function from an aperiodic component into
ht for noise when varying the mapping parameter α

Voice Conversion with STRAIGHT Mixed
Excitation

MLE-based Conversion with GMM [8]

use 2D-dimensional acoustic features, Xt =
ˆ
x�

t , Δx�
t

˜�
rce speaker’s) and Y t =

ˆ
y�

t , Δy�
t

˜�
(target speaker’s),

isting of D-dimensional static and dynamic features, where �
tes transposition of the vector. By using time-aligned source
target features determined by Dynamic Time Warping, we
a GMM to model the joint probability density p (X, Y |Θ),

re Θ denotes model parameters.
When converting the source static and dynamic feature vec-

X =
ˆ
X�

1 , · · · , X�
T

˜�
to the target static feature vectorsˆ

y�
1 , · · · , y�

T

˜�
, the following function is maximized with

ect to y,

ŷ = arg maxy log {p (Y |X,Θ)ω · p (�(y)|„ν)} (4)

Subject to Y = W y,

re p (Y |X,Θ) denotes the likelihood of conditional probabil-
ensity functions (pdfs) on the target static and dynamic feature
ors, and p (�(y)|„ν) represents the likelihood of a pdf on the
al variance (GV) of the target static feature vectors.

Applying STRAIGHT Mixed Excitation

re 5 shows the process of the proposed voice conversion. Our
osed method employs two GMMs. One is used for the spec-
conversion and the other is for the aperiodic conversion. Both
ersions are performed with MLE. We consider global variance
) only in the spectral conversion because GV does not cause
large difference to the converted speech in the aperiodic con-
ion. We synthesize the mixed excitation from the converted
iodic components. Finally, we synthesize the convert speech
ltering the excitation with the converted spectra.

4. Experimental Evaluation
used the speech data of two male speakers and two

ale speakers from ATR’s phonetically balanced sentence
base [11]. We considered 50 sentences for training data, and
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Figure 5: Process of the proposed voice conversion.

another 50 sentences for the evaluation. The total number of com-
binations of source and target speakers was 12.

For the spectral feature, we take the first through the 24th mel-
cepstral coefficients from the STRAIGHT smoothed spectrum.
For the aperiodic feature, we used average dB values of the aperi-
odic components on five frequency bands (0 to 1, 1 to 2, 2 to 4, 4
to 6 and 6 to 8 kHz).

In each feature conversion, we used full covariance matrices,
and set the number of mixtures for the spectral conversion to 32
based on our preliminary experiment.

4.1. Optimization of Mapping Parameter

To optimize the mapping parameter α for each speaker, we evalu-
ated the aperiodic component distortion between natural speech
and analysis-synthesized speech. Figure 6 shows the aperiodic
component distortion as a function of the mapping parameter α.
It is apparent that 8 is the optimal value for every speaker, thus
we designed STRAIGHT mixed excitation using this value in the
following.

To demonstrate the effectiveness of the mixed excitation in
the analysis-synthesis, we evaluated the speech quality of natu-
ral speech, analysis-synthesized speech without mixed excitation,
and analysis-synthesized speech with mixed excitation. Figure 7
shows the result of a preference test. The number of listeners in
the case was five. The figure shows that the speech quality of
analysis-synthesized speech using mixed excitation is higher than
that without mixed excitation.
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Figure 6: Aperiodic component distortion as a function of the map-
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Figure 7: Result of preference test on speech quality.

Objective Evaluation of Conversion Quality

evaluated the distortion between the target aperiodic compo-
and the converted one. Figure 8 shows the aperiodic com-
nt distortion as a function of the number of mixtures. The
iodic conversion causes a reduction of the aperiodic distor-
. Therefore, the conversion causes the source signal of which
acteristics are much more similar to those of the target speaker
pared with those of the source speaker. The optimum number
ixtures is 32. However, it is shown that the conversion perfor-
ce is not very sensitive to the number of mixtures.

Subjective Evaluation of Speech Quality and Speaker In-
duality

subjectively evaluated the converted speech quality and the
ersion accuracy for the speaker individuality. In this evalu-
, we employed the following converted voices:

• Converted voice without the mixed excitation

• Converted voice with the mixed excitation based on source
speaker’s aperiodic component

• Converted voice with the mixed excitation based on the
converted aperiodic component

e preference test for speech quality, we randomly presented a
of voices from three kinds of voice to eight listeners.
In the XAB test on speaker individuality, we presented the tar-
speaker’s voice and after that a pair of converted voices ran-
ly. Then we asked listeners which converted voice is similar
e target speaker’s. The number of listeners was six.

. Speech Quality

re 9 shows the result of the preference test. The STRAIGHT
ed excitation greatly improved speech quality when using
ed excitation. Moreover, the results reveal that the aperiodic
ersion slightly improves the converted speech quality.

. Speaker Individuality

re 10 shows the result of the XAB test. We can see that
conversion accuracy for speaker individuality was also im-
ed by using STRAIGHT mixed excitation. In addition, we
slightly improve it further by converting the aperiodic compo-
s.
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Figure 9: Result of preference test on speech quality.

5. Conclusions
In this paper, we introduced STRAIGHT mixed excitation to Max-
imum Likelihood Estimation (MLE)-based voice conversion with
a Gaussian Mixture model (GMM) in order to improve the con-
verted speech quality and the conversion accuracy for speaker in-
dividuality. We statistically converted a source feature sequence of
the STRAIGHT mixed excitation as well as a spectral sequence.
In addition, we subjectively evaluated the proposed conversion
method, finding that proposed method improved both converted
speech quality and conversion accuracy for speaker individuality.
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