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Abstract
This paper addresses robust speech feature extraction in combina-
tion with statistical speech feature enhancement and couples the
particle filter to the speech recognition hypotheses.

To extract noise robust features the Fourier transformation is
replaced by the warped and scaled minimum variance distortion-
less response spectral envelope. To enhance the features, particle
filtering has been used. Further, we show that the robust extraction
and statistical enhancement can be combined to good effect.

One of the critical aspects in particle filter design is the par-
ticle weight calculation which is traditionally based on a general,
time independent speech model approximated by a Gaussian mix-
ture distribution. We replace this general, time independent speech
model by time- and phoneme-specific models. The knowledge of
the phonemes to be used is obtained by the hypothesis of a speech
recognition system, therefore establishing a coupling between the
particle filter and the speech recognition system which have been
treated as independent components in the past.
Index Terms: particle filters, automatic speech recognition,
speech feature enhancement, phoneme-specific

1. Introduction
Particle filters (PF)s, a.k.a. sequential Monthe Carlo methods,
originally developed for typical tracking applications like pursu-
ing airplanes in radars [1], or persons in video images [2], are
increasingly pervading other fields of engineering covering navi-
gation, robotics, communications and (industrial) process control.
Recently, they have found their way into speech recognition [3, 4]
where they are used for the enhancement of speech features cor-
rupted by noise. The advantage over classical methods like spec-
tral subtraction [5] or Wiener filtering is that the PF allows the
noise to be non-stationary.

The two critical aspects in PF design are the choice of the im-
portance or proposal density and the particle weight calculation.
A variety of different particle filter variants have been evaluated
for the enhancement of speech features: auxiliary and likelihood
PFs [6] as well as PFs with an extended Kalman filter proposal
density [4]. In those approaches, however, the particle weight
calculations were always based on a general, time-independent
speech model approximated by a Gaussian mixture distribution.
We propose to calculate the particle weights with a speech model
that accounts for the dynamics of speech: a time- and phoneme-
specific speech model, where the phoneme hypotheses stem either
from forced alignment given the transcripts (a Wizard of Oz ex-
periment to give an lower bound in terms of word error) or from a
previous speech recognition pass.
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2. Particle Filter Based Speech Feature
Enhancement

ur best knowledge, Singh and Raj [7] were the first to use PFs
e context of speech feature enhancement for speech recog-
n. In their approach, a PF is employed to track the noise
ence that corrupts the speech signal. The estimated noise se-
ce is then used to clean or enhance the speech features. This is

ormed in spectral domain between two typical processing steps
eech feature extraction: after the filterbank which reduces the

ension of the input vector in the logarithmic mel power domain
before the transformation into the cepstral domain by a dis-
cosine transformation. We briefly restate Singh’s and Raj’s

oach in the following two sections (2.1, 2.2). Section 2.3 ad-
ses the problem of divergence in conjunction with continuous
ch recognition. In section 2.4 we increase noise robustness by
acing the Fourier transformation with a spectral envelope. Sec-
3 will finally introduce the phoneme-dependent speech model
explains how it can be coupled with the speech recognizer.

Tracking the Noise

the PF to be applicable it is necessary to develop a dynamical
em model (DSM) for the noise. Raj et al. proposed a 1st-order
regressive model

nt = A · nt−1 + εt

re A is the transition matrix that is learned for a specific
of noise and nt denotes the noise spectrum at time t. The

erms are considered to be i.i.d. zero mean Gaussian, i.e.
N (0, Σnoise). Throughout this paper,

N (x; μ, Σ) =
1

(2π)d |Σ|e
− 1

2 (x−μ)T Σ(x−μ)

l denote a Gaussian distribution with mean μ and diagonal co-
ance matrix Σ. Using this notation the noise transition proba-
y p(nt+1|nt) can be written as

p(nt+1|nt) = N (nt+1; A · nt, Σnoise)

oting corrupted, clean and estimated clean speech spectra by
and x̃ respectively, the particle filtering stage can be outlined
llows:

. At time zero (t = 0) noise hypotheses or particles n
(j)
0

(j = 1, ..., N ) are sampled from the probability distribution
p(n) learned for noise spectra. Sampling from a probabil-
ity distribution means simulating values (samples) of that
probability distribution.
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2. Modeling the probability distribution of clean speech spec-
tra as a Gaussian mixture distribution

p(x) =

K

k=1

ckN (x; μk, Σk) (1)

the likelihood l(n
(j)
t ; yt) = p(yt|n(j)

t ) of each noise hy-

pothesis n
(j)
t can be evaluated as

p(x̃
(j)
t ) =

K

k=1

ckN (yt + log(1 − en
(j)
t −yt); μk, Σk)

1 − en̂
(j)
t −yt

where x̃
(j)
t is the imputed clean speech spectrum which can

be calculated from n
(j)
t and yt

x̃
(j)
t = yt + log(1 − en

(j)
t −yt) (2)

if the phase is discarded [6].

3. The normalized likelihoods or weights

ω
(j)
t =

p(yt|n(j)
t )

N
m=1 p(yt|n(m)

t )

are now used to resample among the noise hypotheses n
(j)
t

(j = 1, ..., N) which can be regarded as a pruning step
where likely hypotheses are multiplied, unlikely ones are
removed from the population.

4. Finally, the resampled noise hypotheses n
(j)
t (j = 1, ..., N)

are used to generate new hypotheses for time t + 1 by sam-

pling n
(j)
t+1 from the transition probability p(nt+1|n(j)

t ),
j = 1, ..., N .

Steps (2-4) are repeated with t �→ (t + 1) until all time-frames of
the speech data are processed.

2.2. Compensating for the Estimated Noise

Given a noise hypothesis n
(j)
t , the corresponding clean speech

spectrum can be approximated by the minimum mean square er-
ror (MMSE) estimation [8, 7]

x̂
(j)
t = yt −

K

k=1

p(k|yt, n
(j)
t )log(1 + en

(j)
t −μk )

where p(k|yt, n
(j)
t ) = p(k|x̃(j)

t ) is the normalized activity of the
kth Gaussian in the Gaussian mixture distribution of clean speech

p(k|x̃(j)
t ) =

ckN (x̃
(j)
t ; μk, Σk)

K
l=1 clN (x̃

(j)
t ; μl, Σl)

Averaging over all noise hypotheses n
(j)
t according to their likeli-

hood yields the estimate for xt:

x̂t =

N
j=1 p(yt|n(j)

t ) · x̂(j)
t

N
j=1 p(yt|n(j)

t )
=

N

j=1

ω
(j)
t · x̂(j)

t

The computational cost of the compensation is

#particles · #gaussians · #(spectral bins)

which in praxis dominates the computational cost of the particle
filter though its asymptotic complexity is the same.
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Handling particle filter divergence

ell-known problem with tracking algorithms is deviation from
target trajectory, which sometimes cannot be recovered. We
this the ’divergence’ problem. Analogically, the PF for speech
re enhancement is said to diverge if the noise sequence is lost
n extended period of time which is usually accompanied by a
inual and considerable misestimation of the noise. Substantial
estimations lead to severe problems with the likelihood com-
tions since

log(1 − en
(j)
t −yt)

) cannot be computed if the magnitude of a noise hypothesis
eds the corrupted speech spectrum. This is a consequence of
idering the noise spectra — this time not in the log domain —
e additive, yt = xt + nt. While Singh and Raj [7] have not
essed the problem, Haeb-Umbach and Schmalenstroeer [6] set
likelihood to 0. Furthermore, they report that this might lead
severe decimation of the particle population up to its complete
hilation. We have also experienced the latter problem and han-
it by repeating the first step of the PF(see section 2.1), thus by

itializing the particles according to the noise distribution p(n)
e overall likelihood

N

j=1

p(yt|n(j)
t )

ery small for a contiguous period of time (in our case 100 ms).
corresponding estimated clean speech spectra were replaced

heir corrupted, non-filtered counterparts.

Improving noise robustness

itionally, PFs for the improvement of speech features are ap-
on the logarithmic mel power spectrum obtained by a mel

rbank on the power spectrum. The disadvantage of this ap-
ch — focusing on robust features — is the equal weighting of
tral peaks and valleys as it is well known that noise is mainly
ent in low energy regions. To overcome this drawback we es-
te the spectrum by the warped and scaled minimum variance
rtionless response (MVDR) [9] spectral envelope as it pro-
s an accurate description only for spectral peaks. For the rep-
ntation of valleys no information about the fine spectral struc-
is preserved, limiting the description more or less to the en-
levels. Therefore, spectral envelopes are more robust to noise
their power spectrum counterparts. The MVDR is used in-

d of the widely known linear prediction (LP) as it has been
n that MVDR spectral estimation overcomes the problems

odeling voiced speech associated with LP spectral estimation
niques [10]. To provide a better approximation of the relevant
cts of the human auditory system, we have applied the well-
n technique of pre-warping — a time-domain technique to
ate an all-pole model based on a warped frequency axis such

e mel scale — to the MVDR spectral estimate.

Coupling Particle Filters with Automatic
Speech Recognition

ious works used a general and static speech model (1) which
ematically ignores the dynamic properties of speech. To over-
e this deficiency we propose to use a time- and phoneme-



ASR

Corrupted Speech

Unadpted Hypo.

Adapted Hypo.

First Pass
Second Pass
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Figure 1: Flowchart of the coupling between the particle filter (PF)
and automatic speech recognition (ASR) engine. GSM denotes
general speech model and PSM denotes phoneme-specific model.

specific model

pphon(t)(x) =

K

k=1

ck,phon(t)N (x; μk,phon(t), Σk,phon(t))

where phon(t) denotes the phoneme spoken at time t. Since the
phoneme is not known in advance, we use a ’two-pass’ PF as de-
picted in Figure 1. In the first pass the PF with the general speech
model is used to clean the speech spectra which are then processed
with the speech recognition system to obtain a first phoneme se-
quence hypothesis (transcription). In the second (and following)
pass(es), the hypothesis of the previous pass enables us to use
the PF with the phoneme-specific model. This way the sophisti-
cated acoustic and language models of the speech recognizer are
incorporated into the particle filtering stage. Unfortunately, the
phoneme-specific filter introduces two new problems:

1. Switching between phonemes causes a very sudden change
of the particles’ (noise hypotheses’) likelihoods which can
destabilize the PF.

2. By correcting all corrupted speech spectra toward the hy-
pothesis from the previous pass we might tie ourselves too
strongly to that hypothesis.

To overcome those problems we interpolate the phoneme-specific
and the general model to form the mixture model

pmix(t)(x) = α · pphon(t)(x) + (1 − α) · p(x)

where α denotes the mixture weight. We have used an equal
weighting between the general and phoneme-specific model
throughout our experiments. A different value of α might lead
to better results.

4. Speech Recognition Experiments
In order to evaluate the performance of the proposed PF enhance-
ments under realistic conditions we have chosen approximately 45
minutes of lecture speech which present significant challenges to
both modeling components used in automatic speech recognition
(ASR), namely the language and the acoustic models. With respect
to the former, the currently available lecture data primarily concen-
trates on technical topics with focus on speech and vision research.
This is a very specialized task that contains many acronyms and
therefore is quite mismatched to typical language models currently
used in the ASR literature. Furthermore, large portions of the data
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ain spontaneous, disfluent, and interrupted speech, due to the
ractive nature of seminars and the varying degree of the speak-
comfort with their topics. On the acoustic modeling side, and
dition to the latter difficulty, the seminar speakers exhibit mo-
te to heavy German or other European accents in their English
ch. Part of this data has been used in the Rich Transcription

5 Spring Meeting Recognition Evaluation [11].

To perform experiments with different signal to noise ratios
R)s we artificially added dynamic noise with a broad variety of
ds coming from a truck, slamming rubbish containers, distant
es, and shouts [12].

As a speech recognition engine we have used the Janus Recog-
n Toolkit (JRTk), which is developed and maintained by the

ractive Systems Laboratories at two sites: Universität Karl-
e (TH), Germany and Carnegie Mellon University, USA. Rel-
ly little supervised in domain data is available for acoustic
eling of the recordings. Therefore, we decided to train the
stic model on the close talking channel of meeting corpora
merge it with the Translanguage English Database (TED)
us [13] summing up to a total of approximately 100 hours of
ing material. The speech data was sampled at 16 kHz. Speech
es were calculated using a 10 ms Hamming window. For each
e, 13 mel frequency cepstral coefficients or warped MVDR
tral coefficients were obtained through a discrete cosine trans-
from the Fourier transformation or the warped MVDR spec-

envelope [9]. Thereafter, linear discriminant analysis was used
duce the utterance based cepstral mean normalized features
7 adjacent to a final feature number of 42. The acoustic model
merge and split training consisted of approximately 3,500

ext dependent codebooks with up to 64 Gaussians with di-
al covariances each, summing up to a total of approximately

,000 Gaussians. To train a 3-gram language model we have
corpora consisting of broadcast news, proceedings of con-

nces such as ICSLP, Eurospeech, ICASSP, ACL and ASRU
TED. The vocabulary contains approximately 23,000 words,
erplexity is around 125 with an out of vocabulary rate below
.

Table 1 shows word errors rates (WER)s for unadapted and
ted passes. In the second – adapted – pass, maximum likeli-

d linear regression (MLLR) [14] and constrained MLLR (fea-
space adaptation) [15] adaptation have been used on the hy-
eses of the first – unadapted – pass. Vocal tract length normal-
on has not been used. The following discussion concentrates,
t stated otherwise, on the more relevant adapted results only.

For clean features the two different front-ends perform equally
. For decreasing SNRs the MVDR based features clearly out-
orm the Fourier based ones. The ’traditional’ PF shows good
rovements for the unadapted recognition pass which is reduced
arginal improvements on the adapted recognition pass. At 0
the unfiltered MVDR based features can even improve accu-
over Fourier based ones that were cleaned using a ’traditional’

The combination of MVDR and ’traditional’ PF can further
rove the good result.

As most of the gain seen on the unadapted pass levels off on
adapted pass, we conclude that the adaptation of the speech
gnition system compensates for most of the noise cleaned by
’traditional’ PF. The good result, a gain in accuracy of more
5% relative, of the proposed phoneme-specific PF on the ref-

ce and the proposed mixture on the reference and hypotheses
cates, that the phoneme-specific PF is able to compensate for
es which can’t be compensated for by the adaptation of the
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speech recognition system. Note that the phoneme-specific PF
failed in the case where no mixture model was used on the hy-
potheses of the ASR engine. This demonstrates the problem of
’model tying’ as mentioned before.

Approximately 3 to 5 percent of the frames were lost be-
cause all particles had zero likelihood. The number of ”dropouts”
seamed to increase for a decrease in SNR and was 10 percent
higher for features obtained by Fourier transformation than for the
ones obtained by warped MVDR.

5. Conclusions
We have successfully demonstrated the combination of robust
speech feature extraction in combination with statistical speech
feature enhancement. Furthermore, we have coupled the indepen-
dent treatment of particle filtering and speech recognition by using
phoneme-specific models.

In the future we want to investigate different mixture weights
for the phoneme-specific and general speech model, cluster similar
phonemes and smooth the phoneme transitions.
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front-end filter type PF adp. on unadp. adp. unadp. adp. unadp. adp. unadp. adp.

Fourier none - 31.7% 25.5% 42.6% 30.3% 48.7% 34.2% 62.7% 44.7%

warped MVDR none - 31.0% 25.4% 39.4% 29.2% 48.1% 33.8% 60.2% 42.4%

Fourier GSM - - - 41.0% 29.6% 46.2% 33.7% 60.1% 43.8%

warped MVDR GSM - - - 38.5% 28.4% 45.6% 33.5% 57.0% 42.1%

warped MVDR PSM reference - - 36.9% 28.3% 41.9% 30.0% 51.0% 36.7%

warped MVDR PSM hypotheses - - - 28.5% - 34.7% - 43.0%

warped MVDR MM reference - - 37.1% 28.5% 43.7% 32.2% 53.9% 39.5%

warped MVDR MM hypotheses - - - 28.4% - 31.8% - 40.3%

WER

clean speech SNR 5 dbSNR 10 db SNR 0 db

Table 1: Word error rates (WER)s for different front-ends, different or no particle filter (PF) and signal to noise ratios (SNR)s. The PF
can either use the general speech model (GSM), the phoneme-specific speech model (PSM) or the mixture model (MM). PF adaptation of
the PSM is either based on the hypothesis (unadapted recognition output) or the reference. The adapted speech recognizer pass has always
been adapted with the output of the corresponding unadapted recognition pass.
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