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Abstract
Joint uncertainty decoding has recently achieved promising results
by using front-end uncertainty in the back-end in a mathematically
consistent framework. One drawback of the method is that it
relies on stereo-data or numerical algorithms, such as DPMC,
which have high computational complexity and are difficult to
deploy in real applications. We propose a Vector Taylor Series
(VTS) approach to joint uncertainty decoding which provides
a closed-form solution to the key problem of estimating the
clean/noisy speech cross-covariance matrix. Our solution does not
require stereo-data or numerical integration. We also propose a
new strategy to deal with the cross-covariance matrix singularity.
Experiments on Aurora2 show that VTS-based joint uncertainty
decoding has similar accuracy compared to DPMC-based joint
uncertainty decoding while being at least three times faster.
Finally, VTS-based joint uncertainty decoding provided more than
2% absolute improvement when combined with our new strategy
for cross-covariance singularity.

Index Terms: speech recognition, noise robustness, VTS, uncer-
tainty decoding

1. Introduction
Noisy environments significantly degrade the performance of au-
tomatic speech recognition (ASR) systems, in particular when the
acoustic models are trained with clean speech. The relatively low
robustness against environmental noise has become a major obsta-
cle for the widespread deployment of ASR technology.

One way to tackle this problem is to estimate the clean speech
features with feature enhancement methods [1] [2], and use the
enhanced features for recognition. Based on different estimation
strategies, these methods only provide unbiased estimation of the
clean features which carries estimation errors (uncertainty).

To improve this, recent efforts [3] [4] explore the effects of
front-end uncertainty into the back-end. In [5], a mathematically
consistent uncertainty decoding framework is introduced and ap-
plied with the front-end enhancement method SPLICE. Further
refinements of this framework lead to joint uncertainty decoding
(JUD) which show better recognition performance than SPLICE-
based uncertainty decoding [6]. A key element of JUD is the cross-
covariance matrix that models the relationship between clean and
noisy speech. The estimation of this matrix requires either the
stereo data [6] or data-driven parallel model combination (DPMC)
[7]. In real applications, stereo data is not always available, and
DPMC is computationally expensive.

In this paper, we uses a Vector Taylor Series (VTS) based ap-
proach to compute the cross-covariance matrix. Our method does
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eed stereo data and is computationally more efficient than the
C. We achieve this by first extending the VTS for the cep-
domain and the dynamic features. Then VTS approximation
plied to simplify the GMM adaptation and to compute the

s-covariancematrix. We show that the cross-covariancematrix
putation with VTS has a similar form for static and dynamic
res, leading to simple and computationally tractable form. On
urora 2 task [8], the proposed VTS-based JUD shows similar

gnition accuracy to the DPMC-based JUD while being more
three times faster.

Furthermore, it is observed that the cross-covariance matrix
be singular when the Signal-to-Noise Ratio (SNR) is low. The
roper inversion in JUD leads to a large number of insertions.
addresses this problem by limiting the minimal values in the
s-covariance matrix with a threshold. The threshold however
s to be experimentally decided. This paper presents a new
ping function which is free of parameter tuning. More than
absolute accuracy improvement is observed when applying the
mapping strategy in the experiments.
The remainder of this paper is as follows: section 2 gives an
view of the joint uncertainty decoding technique; section 3
duces VTS-based JUD; in section 4, experimental results on

ora 2 are presented and conclusions are finally drawn in section

Overview of Joint Uncertainty Decoding
e classical hidden Markov model (HMM) based ASR, the core
is the calculation of the HMM state emission probability mod-
by the GMM:

p(x|S) =
X
m∈S

cmN(x;μm, Σm), (1)

re x is the clean speech feature, S is the HMM state, and
;μm, Σm) is the Gaussian probability density function with

n μm, covariance matrix Σm and mixture weight cm.
Given the noisy speech feature y, JUD directly computes the
emission probability of y:

p(y|S) =

Z
p(y|x)p(x|S)dx. (2)

To solve the integration in Eq.(2), the conditional probability
x) needs to be properly modeled. By modeling the clean fea-
space with a front-end GMM, the relationship between clean
noisy speech is expressed in each mixture s i by assuming their
t distribution Gaussian:
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p(y|x, si) = N(y; μy|x,si
, Σy|x,si

) (3)

and the probability in Eq.(2) can be written as:

p(y|S) =

Z X
i

P (si|y)p(y|x, si)p(x|S)dx (4)

where μy|x,si
and Σy|x,si

are respectively the conditional mean
and variance matrix in the front-end mixture si. Eq.(4) can be
expressed as [7]:

p(y|S) =
X
m,i

cmP (si|y)N(y; Biμm − Bibi, BiΣmBT
i +

BiΣ̃iB
T
i )

=
X
m,i

cmP (si|y)|Ai|N(Aiy + bi; μm, Σm + Σ̃i) (5)

and

Ai = B−1
i = Σi

x(Σi
yx)−1

bi = μi
x − Aiμ

i
y

Σ̃i = AiΣ
i
yAi

T − Σi
x

where μi
y and Σi

y respectively denote the mean and variance of
the noisy speech in the front-end GMM. These parameters can be
obtained from the corresponding clean GMM parameters μ i

x and
Σi

x by parallel model combination (PMC). To make the computa-
tion efficient, it was suggested in [6] to further simplify Eq.(5) by
selecting the front-end mixture with the highest likelihood:

p(y|S) =
X
m

cmN(Ai∗y + bi∗ ; μm, Σm + Σ̃i∗) (6)

where
i∗ = arg max

i
P (si|y)

Notice from Eq.(6) that JUD estimates the clean speech
features by Ai∗y + bi∗ whereas the matrix Σ̃i∗ represents the
uncertainty of the estimation.

3. VTS based Joint Uncertainty Decoding
The most computationally expensive parts of JUD are the adap-
tation of the front-end GMM and the estimation of the cross-
covariance matrix Σi

yx. The adaptation often involves PMC
whereas the estimation requires stereo data or DPMC which are
not realistic in real-life applications.

The VTS method proposed in [2] has shown a recogni-
tion performance similar to PMC while having a much lower
computational complexity. The VTS-based GMM adaptation
and cross-covariance matrix calculation are therefore expected
to be a good substitute for PMC and DPMC. However, the
original VTS works in the log-Mel domain with static features
and needs to be extended to cepstral domain and dynamic features.
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effect of additive noise is non-linear in the cepstral domain.
static features, the relationship is:

y = x + g(x, n) = x + C ln(1 + eC−1(n−x)) (7)

re C denotes the discrete cosine transformation matrix, n, x
y the static features for the noise, clean speech and noisy
ch, respectively. In each front-end mixture s i, the above non-
r relationship can be linearly approximated by the first-order
or series as:

y ≈ μi
x + g(μi

x , μn) + W (x − μi
x)

+ (I − W )g(μi
x , μn)(n − μn) (8)

W = I + �xg(μi
x, μn)

re μn is the noise mean and I the identity matrix.
It is reasonable to consider the delta and delta-delta features as
rst and second derivative of the static features over time [10].

s, we can write for the dynamic features:

y ≈ �μx + (W − I)g(μi
x, μn)�μx + (I − W )�μn

+W (�x −�μx) + Z(x − μx)

+(I − W )(�n −�μn) − Z(n − μn) (9)

y ≈ W��μx + Z�μx + (I − W )��μn − Z�μn

+W (��x −��μx) + 2Z(�x −�μx)

+K(x − μx) + (I − W )(��n −��μn)

−2Z(�n −�μn) − K(n − μn) (10)

re

Z =
∂W

∂t
=

∂W

∂μx
�μx +

∂W

∂μn
�μn

K =
∂Z

∂t

Adaptation of the front-end GMM

d on the VTS relationship derived, the mean values of the
t-end GMM can be adapted as follows:

μi
y ≈ E(y|si) = μi

x + g(μi
x, μn) (11)

�μi
y ≈ W�μi

x (12)

��μi
y ≈ W��μi

x + Z�μx (13)

In this paper, we don’t update the covariance matrix in the
t-end GMM because the adaptation requires the estimation of
oise variance which can be highly unreliable [11]. We there-
assumes Σi

y = Σi
x.



3.3. Cross-covariance Matrix Estimation

Based on VTS in Eq.(8), the cross-covariance matrix Σ i
yx for static

features is computed as follows:

Σi
yx = E[(y − μi

y)(x − μi
x)T |si]

= E{W (x − μi
x)(x − μi

x)T

+ (I − W )(N − μn)(x − μi
x)T }

= WΣi
x (14)

Similarly, for dynamic features, the cross-covariance matrices
are obtained from Eq.(9) and (10):

�Σi
yx = W�Σi

x (15)

��Σi
yx = W��Σi

x (16)

We believe using VTS is better than DPMC for two reasons.
First, VTS gives a closed-form solution of the cross-covariance
matrix and reduces the computational complexity compared to
DPMC which relies on the simulation of hundreds of samples x
and n for each GMM mixture.

Second, the cross-covariance matrices in Eq.(14)-(16) have
similar forms for static, delta and delta-delta feature components.
Thus, the Ai matrix of Eq.(5) becomes:

A =

0
@ W−1 0 0

0 W−1 0
0 0 W−1

1
A (17)

Having the exactly same blocks for static, delta and delta-delta
features in Ai matrices makes it possible to reduce the complexity
needed to compute the A i by up to one-third.

4. Experiments
Experiments are conducted on the Aurora 2 database [8] of con-
nected digits. The database is divided into two training sets (clean
and multi-condition) and three noisy testing sets. Test set A and B
respectively include four types of additive noise with SNR ranging
from 20 to 0 dB while set C also contains convolutional noise. In
this paper, we use the clean training set to train the models and only
test set A for the recognition test. Recognition is performed with
HTK [12]. Each digit is modeled by 16 HMM states with three
mixtures whereas the silence is modeled by 3 states each with 6
mixtures.

SNR(dB) Subway Babble Car Exhibition Average
20 97.02 91.05 96.54 96.79 95.35
15 92.82 74.40 88.16 92.63 87.00
10 77.00 47.88 63.44 76.43 66.19
5 49.68 24.58 27.92 43.69 36.47
0 23.00 10.40 9.57 16.17 14.79

Average 67.90 49.66 57.13 65.14 59.96

Table 1: Recognition accuracy (%) for baseline

The front-end is a 13-dimensional MFCC with delta and delta-
delta components. To facilitate PMC and DPMC implementation,
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ynamic features are generated by simple difference [10] and
nergy term used in MFCC is the 0th cepstral component, in-

d of the logarithm energy.
Compared to other JUD implementations [6] which use stereo
to estimate noise parameters μn and Σn, we adopt a simple

e estimation based on the first 10 non-speech frames of each
ance. The DPMC simulates 100 random feature vector pairs
) for each front-end GMM mixture, and the Σi

yx and Ai ma-
s are assumed diagonal.
Moreover, an important detail is how to deal with singularities
e cross-covariance matrix Σi

yx. It is noticed in [9] that the Σi
yx

become singular at low SNRs, which may lead to a large num-
of insertions. To address this problem, [9] limits the minimal
e of each diagonal component σ i

yx,k in the cross-covariance
ix Σi

yx as:

σ̂i
yx,k = max(σi

yx,k, ρthσi
y,kσi

x,k) (18)

re ρth is a threshold that needs to be experimentally tuned.
rnatively, we propose the following mapping on each diago-
omponent ak that has the advantage of not being sensitive to
meter tuning:

âk = ak
2

1 + ak
(19)

Table 2 – 5 show that JUD with 128 front-end mixtures
eves significant improvement compared to the baseline in ta-
. The JUD results are not as good as in [9] because the noise
ation in [9] is from stereo data and has no estimation errors.

DPMC and VTS have quite similar recognition accuracy for
st all the noise types and SNRs. Compared to the hard thresh-

in table 2 – 3 with the optimal ρth = 0.9, the mapping tech-
e brings more than 2% improvement.
Fig.1 compares the complexity of VTS and DPMC-based JUD
varying number of mixtures. Notice that VTS-based JUD is

e than three times faster than DPMC-based JUD.

R(dB) Subway Babble Car Exhibition Average
20 97.54 97.94 98.24 97.96 97.92
15 95.52 95.95 96.33 95.59 95.85
10 90.94 90.87 88.61 89.60 90.01
5 77.40 71.37 66.69 74.02 72.37
0 46.79 39.78 30.63 44.12 40.33

erage 81.64 79.18 76.10 80.26 79.29

e 2: Recognition accuracy (%) for DPMC-based JUD with
sholding ρth = 0.9

R(dB) Subway Babble Car Exhibition Average
20 97.51 97.88 98.27 97.96 97.91
15 95.52 95.95 96.33 95.59 95.85
10 90.94 90.87 88.61 89.60 90.01
5 77.40 71.37 66.69 74.02 72.37
0 46.79 39.78 30.63 44.12 40.33

erage 81.63 79.17 76.11 80.26 79.29

e 3: Recognition accuracy (%) for VTS-based JUD with
sholding ρth = 0.9



SNR(dB) Subway Babble Car Exhibition Average
20 97.67 97.82 98.18 98.12 97.95
15 95.52 95.95 96.78 95.56 95.95
10 91.71 90.96 90.90 90.25 90.96
5 80.66 74.24 74.77 76.74 76.60
0 55.11 42.74 37.58 51.81 46.81

Average 84.13 80.34 79.64 82.50 81.65

Table 4: Recognition accuracy (%) for DPMC-based JUD with An

mapping

SNR(dB) Subway Babble Car Exhibition Average
20 97.73 97.73 98.15 98.15 97.94
15 95.58 95.98 96.81 95.53 95.98
10 91.53 90.69 90.93 90.13 90.82
5 80.87 74.52 74.86 76.92 76.79
0 54.87 42.90 37.43 51.53 46.68

Average 84.12 80.36 79.64 82.45 81.64

Table 5: Recognition accuracy (%) for VTS-based JUD with An

mapping

5. Conclusions
Recently, joint uncertainty decoding, which estimates and prop-
agates the front-end uncertainty to the back-end has achieved
promising results. The algorithm however relies on the adaptation
of the front-end GMM and the estimation of the cross-covariance
matrix, which requires either stereo data or the complex numerical
DPMC. In this paper, we overcome this drawback by introducing
a VTS-based JUD and achieves closed-form solution for the cross-
covariance matrix. This makes the computation of this matrix ef-
ficient. Also we introduce a new mapping strategy to tackle the
sigularity problem of the cross-covariance matrix. On the Aurora
2 task, the proposed VTS-based method shows similar recognition
performance while being more than three times faster compared
to the DPMC-based JUD. In addition, more than 2% absolute im-
provement of the recognition accuracy can be achieved when com-
bining the VTS-based method with the new mapping strategy.
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