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Abstract

We present an algorithm for reconstructing a time-domain signal
from the magnitude of a short-time Fourier transform (STFT). In
contrast to existing algorithms based on alternating projections,
we offer a novel approach involving numerical root-finding com-
bined with explicit smoothness assumptions. Our technique pro-
duces high-quality reconstructions that have lower signal-to-noise
ratios when compared to other existing algorithms. If there is lit-
tle redundancy in the given STFT, in particular, the algorithm can
produce signals which also sound significantly better perceptually,
as compared to existing work.
Index Terms: signal reconstruction, phase retrieval.

1. Introduction
Reconstruction of a time-domain signal from only the magnitude
of the short-time Fourier transform (STFT) is a common prob-
lem in speech and signal processing. Many applications, including
time-scale modification, speech morphing, and spectral signal en-
hancement involve manipulating the STFT magnitude, but do not
clearly specify how to adjust the phase component of the STFT
in order to invert back into the time domain. Indeed, for many
STFT magnitude modifications, a valid inverse of the STFT does
not exist and a reasonable guess must be made instead.

In this paper, we present an algorithm for reconstruction of a
time-domain signal from the STFT magnitude, modified or other-
wise. In contrast to existing algorithms based on alternating pro-
jections, our technique applies numerical root-finding combined
with explicit smoothness assumptions to give high-quality recon-
structions. We have found that imposing smoothness at several
stages of the algorithm is the critical component responsible for
estimating good signals. Formulating the reconstruction problem
in terms of non-linear systems of equations serves as a convenient
vehicle for the inclusion of smoothness constraints in a straight-
forward manner. Our method produces results that appear to be
perceptually superior to the algorithms due to Griffin and Lim [6]
and Achan et al. [1], particularly when there is little overlap be-
tween STFT analysis windows.

In section 2 we give an overview of the signal reconstruction
problem, and in section 3 we introduce the root-finding framework
we have used to find solutions to this problem. Section 4 presents
the smoothness constraints we have chosen to impose, followed by
a description of the algorithm itself. In section 5 we compare the
performance of our technique to Griffin and Lim’s method over
a range of STFT window overlaps. Finally, in section 6 we offer
concluding remarks.
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2. Overview of the Phaseless Signal
Reconstruction Problem

e zeros of the Z-transform of a signal lie either entirely inside
utside the unit circle, then the signal’s phase may be uniquely
ed to its magnitude via the Hilbert transform [9]. In the case of
e speech or music signals, however, such a condition on the ze-
oes not ordinarily hold. Under some conditions, mixed-phase

als can be recovered to within a scale factor from only magni-
or phase [7], and can be uniquely specified from the signed-

nitude [10]. But the conditions required in [7] are restrictive,
le retaining any phase-information, albeit even a single bit, is
possible for many common spectrogram modifications.
In this paper, we will focus on reconstruction from magnitude
tra only. Generally, we would like to take a signal, manipulate
agnitude, and from the modified spectra be able to estimate
est possible corresponding time-domain sequence. In the ab-
e of any modifications, we would hope to retrieve the origi-
time-domain signal from the magnitude. If only the Discrete
rier Transform (DFT) magnitude of a signal is provided, then
must make additional a priori assumptions in order to guess
corresponding signal. This is a common problem in several
s, such as x-ray crystallography, electron diffraction, and re-
e sensing [5]. If, however, we work with the short-time Fourier
sform (STFT), accurate reconstruction is often possible with-
a priori assumptions or constraints. Given a suitable length N
dowing function w(n), we can define the STFT by sliding the
al x(n) through the window and taking the K-point DFT:

S(ωk, �) =

N−1X
n=0

x(n + �)w(n)e−jωkn (1)

re the DFT frequency bins are ωk = 2πk
NT

, k = 0, . . . , K − 1
n sampling rate fs = 1/T . Because both the magnitude

k, �)| and phase ejφ(ωk,�) of the STFT contain information
t the amplitude and phase of the original signal, throwing

y the STFT phase does not mean that we have entirely elimi-
d the original phase of x(n) [4].
Several algorithms have been proposed to estimate a signal

the STFT magnitude. Achan et al. [1] introduced a genera-
approach for speech signals that infers a time-domain signal

a model trained on a specific speaker or class of speakers.
fin and Lim [6] apply an iterative technique similar in spirit to
arlier algorithm advanced by Fienup [5]. While it is difficult
alyze the convergence and uniqueness properties of Fienup’s

rithm, Griffin and Lim’s approach employs alternating con-
projections between the time-domain and the STFT domain
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that have been shown to monotonically decrease the squared er-
ror between the given STFT magnitude and the magnitude of an
estimated time-domain signal. In the process, the algorithm thus
produces an estimate of the STFT phase. Nawab et al. [8] proposed
a sequential algorithm which reconstructs a signal from its spectral
magnitude by extrapolating from the autocorrelation functions of
each short-time segment, however the approach places sparseness
restrictions on the signal and requires that the first h samples of
the signal be known, where h is the STFT window hop size. The
algorithm presented herein requires neither samples of the signal
to be reconstructed, nor does it place constraints on the number of
consecutive zeros that can appear in the reconstruction.

3. Signal Reconstruction as a Root-Finding
Problem

Griffin and Lim’s algorithm attempts to estimate a signal that is
consistent with a given spectrogram by inverting the full STFT
at each iteration. Alternatively, we can analyze consistency on a
column-wise basis, where the spectrogram |S(ωk, �)| is viewed as
a matrix with frequency spanning the rows, and time the columns.
Given a single column �0 from the magnitude of the STFT, we
wish to determine the segment of signal x̃(n) = x(n + �0)w(n)
that satisfies the system of equations given by (1):

|S(ωk, �0)| =

˛̨̨
˛̨
N−1X
n=0

x̃(n)e−jωkn

˛̨̨
˛̨ , k = 0, . . . , K − 1. (2)

In the discussion that follows, we will abbreviate the above sys-
tem with the notation |F x̃| = m, where F is the K × N Fourier
matrix, and m ≥ 0 is the given spectrogram column. Note that al-
though (2) appears to be a system of K equations in N unknowns
as it is written, the Fourier magnitude is an even-symmetric func-
tion because we allow only real-valued time-domain signals. Thus
we really only have K/2 linearly independent equations, and 2x
oversampling in the DFT is needed to make the system square.
In practice we set K = 2N when computing the original STFT,
and solve for x̃ using only half of the desired magnitude vector
m and a truncated Fourier matrix F . Finally, if we rearrange (2)
to get G(x̃) ≡ |F x̃| − m = 0, x̃ is seen as a root of the function
G : R

N → R
N so that estimating the signal is equivalent to solv-

ing a numerical root-finding problem.
It should be noted, however, that there are almost always an

infinite number of possible roots x̃ satisfying |F x̃| − m = 0,
since we can at best match just the magnitude spectra m. Writing
F x̃ = Dm in terms of the phasor matrix D = diag(ejφ(ωk)), the
phases φ(ωk) need only satisfy the condition Im{F−1Dm} = 0.
Which root the iteration actually returns will strongly depend on
the initial condition x̃0.

3.1. Solution of non-square systems of nonlinear equations

As we will discuss below, our algorithm involves solving for only a
subset of the samples in a segment of the signal, while holding the
remaining points fixed. One way to solve a system of p nonlinear
equations in q unknowns when p > q is to formulate the task as a
locally linear least-squares problem. In particular, given a system
of equations f(x) = 0, suppose that we choose the objective func-
tion 1

2
‖f(x)‖2

2, and linearize f(x) via a Taylor expansion about
the point xk. Defining the Jacobian Jij(x) = ∂fi

∂xj
, we have

f̃(x) = f(xk) + J(xk)(x − xk). (3)
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r substituting f̃(x) into our original objective we arrive at the
ar minimization problem

k+1 = argmin
x∈Rq

{f(xk)T f(xk) + 2(x − xk)T J(xk)T f(xk)

+ (x − xk)T J(xk)T J(xk)(x − xk)}.
(4)

ng the derivative and setting it equal to zero gives a recursive
nition for the next point in terms of the current one:

xk+1 = xk −
`
J(xk)T J(xk)

´−1
J(xk)T f(xk). (5)

n an initial guess x0, equation (5) is seen as the classic Gauss-
ton method [2] for the solution of nonlinear least-squares
lems.
In practice, one rarely provides closed form expressions for
Jacobian, nor do we want to directly evaluate all p2 partial
vatives. In fact, for the system |F x̃| − m = 0, the deriva-

d|z|
dz

, which shows up in the chain of derivatives needed to
pute the Jacobian, does not exist in the sense that the Cauchy-
ann equations cannot be satisfied; the function f(z) = |z| is

analytic in the complex plane C. We therefore use a variant
royden’s method [3] in order efficiently compute a numerical
oximation to the Jacobian during the course of the iteration

4. Incremental Reconstruction with
Regularization

e STFT (1) is computed with overlapping windows, as is often
ase, we can exploit this redundancy in order to estimate a sig-

from the spectrogram. Both Griffin and Lim’s algorithm and
algorithm presented here utilize the constraints on the signal
osed by the overlapping regions when estimating a sequence
istent with the given STFT magnitude. While Griffin and Lim
de these constraints in the form of intersecting convex sets, we
st redundancy in the STFT as the first of two smoothness con-
ints. The second constraint imposes smoothness over a single

ent only. Combining these constraints, we construct an initial
s x̃0 for the current signal segment that can be expected to lead
good final reconstruction via the iteration (5). This process ef-
vely “biases” the root-finding process towards an appropriate
tion.
We additionally assume positivity in the reconstruction, in or-
to eliminate phase sign errors. This constraint requires only
we either add a constant factor to the DC elements of the
trogram before applying the algorithm, or simply work with
n-negative version of the original signal.

Smoothness Across Segments

efinition, in the region of overlap the window of signal cor-
onding to the i-th and (i + 1)-th columns of the spectrogram
t be the same. If we choose to recover only individual windows
the signal at a time by solving (2), then the above statement

lies that the i-th piece of signal ought to factor into the compu-
n of the (i + 1)-th window of signal. This feedback process
be thought of as a form of regularization: the current window
gnal must look something like the previous one. The structure
e STFT tells us that the segments must not change too much
one time instant to the next. If the amount of overlap between

cent windows is greater, then there is a better chance that this
mption will hold.



4.2. Smoothness Within Segments
Overlap constraints provide a good deal of information about
x(n), however there are still many possible candidate solutions
x̂(n) that satisfy the overlap conditions but do not give back any-
thing near the original signal (when it is known). This problem is
amplified when the STFT step size h is large. Therefore, in or-
der to further bias the search for a solution towards a good one,
we make an additional smoothness assumption in the region of the
window where there is no overlap with the previous segment.

In this region, we must form a reasonable guess as to what the
signal might look like when constructing an initial condition x̃0 for
the iterative root-finding procedure. We explore two smooth pos-
sibilities in the non-overlapping region: linear extrapolation from
a leading or trailing subset of the known overlap points, or zero-
order hold extrapolation from the last overlap point. Smoothness
can be quantified for both of these methods by examining the en-
ergy in the first and second derivatives of a signal constructed by
concatenating the “fixed” values with the h extrapolated points. If,
in the the linear extrapolation case, we find the energy over the en-
tire signal in the first derivative to be E1, and in the second deriva-
tive to be E2, then it must be true that for zero-order hold with the
same fixed portion of the signal, the resulting signal xz(n) will
have energies

‖Dxz(n)‖2 ≤ E1, and ‖D2xz(n)‖2 ≥ E2 (6)

where D and D2 denote first and second discrete derivative opera-
tors respectively. Linear extrapolation therefore reduces energy in
the second derivative, while zero-order hold continuation will give
lower energy in the first derivative. Empirically we have found
that linear-extrapolation is preferable when the STFT step size h
is small compared to the window size (10% of the window width
or less), while zero-order hold yields improved results when h is
large. Eventually, linear extrapolation may well produce samples
far from the known values as we extrapolate away from the known
region of the signal. Thus a mixture of the two methods is yet an-
other possibility, where we might extrapolate for a small number
of points relative to the window size and sampling rate, and then
hold the final value for the remainder of the extrapolation interval.

We impose one final constraint on each segment. After the
root-finding iteration has converged to a solution, we set the mean
of the result to the value specified by the DC term of the length N
segment’s Fourier magnitude, |S(ω = 0, �0)|/N .

4.3. Incremental Signal Reconstruction: Forward-Backward
Recursions

The algorithm proceeds by stepping through the STFT magnitude,
column by column, first in the forward direction, and then heading
backwards. At each segment, a window of signal is estimated and
written to a buffer at a position corresponding to that window’s
position in the original signal. In the forward direction, smooth-
ness across segments is incorporated when computing a recursive
solution to (2) for window (i + 1), by explicitly fixing points in
the region of overlap with window i to the shared values in the so-
lution returned for that segment. Going backwards, we instead fix
the overlapping values for segment i to those previously given by
segment (i+1). The very first window of signal in the forward pass
is computed from an initial guess x̃0 comprised of random values
drawn from the uniform distribution U [0, 1]. The first backwards
pass window is computed from the last forward solution. The full
reconstruction is then assembled by overlap-adding the individual
time-domain segments according to the original STFT hop size.
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The forward pass can be thought of as computing an initial es-
te of the signal using previously computed segments for guid-
. The backward pass then back-propagates information and
traints accumulated in the forward pass, and can be seen to ef-
vely “repair” errors incurred during the forward computations.
irically, it is often the case that the first few reconstructions in

forward pass tend to be error prone, due to a lingering influ-
from the random initial starting point used to launch the al-

thm. However, the smoothness constraints we have described
kly guide the roots towards the desired signal values.
Although we have thus far discussed only interactions between
cent segments of the signal, for STFT hop sizes h < N a
n segment will both constrain, and be constrained by, many
r segments in a columnar region of the spectrogram. Each
dow of signal can be thought of as a node within a (cyclic,
hable) network, across which constraints may propagate in any
ction. In this framework, recovering the full signal x(n) is
to finding an equilibrium point where all the constraints are

fied simultaneously. It is possible that a dynamical systems
pective can be used to describe the behavior of this algorithm.
Finally, we have found that repeating the algorithm on a spec-
ram derived from a time-reversed version of the original signal
reduce the reconstruction error further. Specifically, averaging
results under the normal and reversed conditions often times
give a SNR lower than either of the individual reconstructions
e.
A concise summary of our algorithm is given in Algorithm 1,
re we have assumed that the size K ×L spectrogram has been
puted with windows of length N and hop sizes h.

x̃0 = rand(U [0, 1])
for all spectrogram columns mi, i = 1, . . . , L − 1 do

· Compute the h elements of x̃0 by extrapolating from
the last p overlapping points in x̃i

· Let x̃ol be the N − h points in x̃i that will overlap
with x̃i+1

· Compute the solution x̂ to |F x̃i+1| − mi+1 = 0
using the Gauss-Newton iteration with initial condition
x̃0, while holding the overlap points in x̃i+1 fixed so
that x̃i+1 = [x̃T

ol x̂T ]T

· Set x̃i+1 = x̃i+1 - mean[x̃i+1 ] + mi+1(0)/N
end
· Repeat the previous loop in the reverse direction, over all
spectrogram columns mi, i = L, . . . , 1, extrapolating in
the opposite direction with x̃i−1 = [x̂T x̃T

ol]
T where x̃ol

are the points in x̃i−1 that overlap with segment x̃i.
· Reconstruct x(n) by overlap-adding the segments {x̃i}L

i=1

lgorithm 1: Incremental Signal Reconstruction Algorithm

5. Experiments
compared the proposed algorithm to Griffin and Lim’s tech-
e on both speech and music signals. In order to better
nce the computation times of the two methods, our algo-

was applied only once to the signals and we did not in-
e the time-reversed solution. We additionally applied a mix-
of extrapolation techniques when forming the initial root-

ing guess. A linear model was fit to the leading/trailing
min(20, N − h) points, and extrapolated for 5 points. The

aining unknown points in the non-overlapping region were
o the last extrapolated point. The success of our algorithm
not critically depend on these choices. Griffin and Lim’s



algorithm was passed uniformly distributed random initial phase
guesses ri ∼ U(0, 1), and was run until the relative decrease in
�2 error between the STFT magnitude of the reconstruction and
the given magnitude was less than 0.1%. We separately eval-
uated Griffin and Lim when given both strictly positive signals
and zero-mean signals. For both methods, positivity was en-
forced by working with spectrograms derived from the target sig-
nal x′(n) = x(n) − minm[x(m)], rather than x(n) itself.

The speech signals we attempted to reconstruct consisted of a
male speaker and a female speaker uttering the phrase “Hi Jane”,
while the music sample consisted of a percussive drum loop with
no other instruments or vocals. The latter example is representative
of a class of signals that tends to be more difficult to recover due
to abrupt, non-smooth transitions and noisy crashes which domi-
nate the structure of the signal. The signals varied in length from
0.75s to 2.2s, were all sampled at 14.7kHz, and were normalized
uniformly. In each experiment, we used a 100 sample (6.8ms)
square (boxcar) window and 200 FFT bins. The STFT hop size,
however, was systematically varied from 10% to 90% of the win-
dow width in steps of 10 samples. We then compared the power
signal-to-noise ratio (SNR) between the original signal xo and the
reconstruction xr for each STFT hop size, where

SNR = 20 log10

„
‖xo‖2

‖xo − xr‖2

«
(dB). (7)

While we have found that both methods are stable with respect
to initial conditions, the experiments were nevertheless repeated
several times.

We show the averaged performance, over 200 trials, on the
male speech sample for both algorithms as a function of STFT
hop size in Figure 1, where the trace denoted “incremental” cor-
responds to our technique. It can be seen that our algorithm con-
sistently outperforms Griffin and Lim’s algorithm as measured by
SNR over the full range of hop sizes. At approximately h = 30,
positivity of the input signal affects Griffin and Lim’s performance.
Overall, it is evident that our technique degrades more gracefully
as redundancy in the STFT is reduced.

While these results are encouraging, Griffin and Lim’s algo-
rithm can give perceptually good results even though the SNR is
poor. Often times this can be attributed to inaudible sign errors
in the reconstruction, particularly for small hop sizes. With larger
hop sizes, we have observed that the error is mainly due to poor
reconstruction and significant distortion can be heard. For this
reason, it is important to compare the perceptual quality of the
two algorithms. In most cases our algorithm is perceptually bet-
ter over the full range of hop sizes, and the distinction is greater
as the STFT analysis window size is increased (while maintain-
ing similar hop sizes as a percentage of window width). In an
effort to provide a fair comparison, we have made available a web
page [11] where the reader can listen to audio comparisons under
several conditions, including those described above.

For small STFT hop sizes our algorithm can require more
computation time than the Griffin-Lim algorithm, depending on
the number of iterations needed to meet the Griffin-Lim conver-
gence criteria. Otherwise, the two algorithms are generally com-
parable in running-time.

6. Conclusions
The algorithm we have presented typically achieves greater signal-
to-noise ratios than existing reconstruction techniques, and the per-
ceptual improvement for speech and music signals is particularly
noticeable when there is less redundancy in the STFT.
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In designing the algorithm, we imposed several time-domain
larization constraints: (1) We exploited the overlap con-
nts inherent in the structure of the STFT explicitly and en-
ed smoothness across windows of the signal. (2) We en-
ed smoothness within an individual segment by extrapolating
e region where samples were unknown. And, (3) we prop-
ed these constraints throughout the entire signal by applying
moothness assumptions recursively in both forward and back-

directions. We then incorporated these time-domain con-
nts into a root-finding problem in the frequency domain. Col-
vely, the constraints can be thought of as biasing the spectral
-finding procedure at each segment towards smooth solutions
are shown to be highly accurate when the true values of the
al are available for comparison.
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