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Abstract
This paper describes a novel framework of voice conversion (VC).
We call it eigenvoice conversion (EVC). We apply EVC to the con-
version from a source speaker’s voice to arbitrary target speakers’
voices. Using multiple parallel data sets consisting of utterance-
pairs of the source and multiple pre-stored target speakers, a
canonical eigenvoice GMM (EV-GMM) is trained in advance.
That conversion model enables us to flexibly control the speaker
individuality of the converted speech by manually setting weight
parameters. In addition, the optimum weight set for a specific
target speaker is estimated using only speech data of the target
speaker without any linguistic restrictions. We evaluate the per-
formance of EVC by a spectral distortion measure. Experimental
results demonstrate that EVC works very well even if we use only
a few utterances of the target speaker for the weight estimation.
Index Terms: speech synthesis, voice conversion, GMM, eigen-
voice, unsupervised training.

1. Introduction
Voice conversion (VC) is a remarkable technique for flexibly mod-
ifying voice characteristics. There are many applications of VC
such as a post-process of Text-to-Speech (TTS) for flexibly syn-
thesizing speech of various speakers, an enhancement of speech
quality for telecommunications, and a multi-lingual speech syn-
thesizer.

Many statistical approaches to VC have been studied since the
late 1980’s [1]. Abe et al. [2] proposed a codebook mapping
method based on hard clustering and discrete mapping. In order to
directly model the correlation between source and target features,
Valbret et al. [3] proposed a conversion method using linear mul-
tivariate regression (LMR), i.e., continuous mapping based on the
hard clustering. As the most popular conversion method, Stylianou
et al. [4] proposed a conversion method with a Gaussian mix-
ture model (GMM). That method realizes the continuous mapping
based on the soft clustering. Recently, Toda et al. [5] significantly
improved the performance of the GMM-based conversion method
by introducing maximum likelihood estimation (MLE) consider-
ing dynamic features and global variance (GV). That method shifts
a conversion form from the conventional frame-based process to
the trajectory-based one. It is indispensable to continue to make
progress in the conversion method for making VC capable of prac-
tical applications.

Several approaches for improving a training method of the
conversion function have been studied as well. As for the GMM-
based conversion, Stylianou et al. [4] proposed a training method
based on least mean square error (LMSE). In order to improve
the robustness against a small amount of training data, Kain and
Macon [6] proposed a training method based on joint density es-
timation (JDE). Those methods use a parallel data set consisting
of utterance-pairs of source and target speakers. Such a training
framework causes many limitations of VC applications. In order to
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ess this problem, Mouchtaris et al. [7] proposed a non-parallel
ing method based on maximum likelihood constrained adap-
n. The GMM trained with an existing parallel data set of a
in source and target speakers is adapted for the desired source

target speakers separately. This adaptation is supported by the
that the feature correlation between a speaker-pair is useful as
ior knowledge for VC between another speaker-pair.
This paper describes a novel framework for the GMM-based
ersion using the information extracted from a lot of pre-stored
kers as the prior knowledge. We call it eigenvoice conver-
(EVC). The eigenvoice is a popular technique in the speech

gnition area [9]. It realizes the hidden Markov model (HMM)
ker adaptation using a quite small amount of adaptation data
educing the number of free parameters for controlling speaker
ndencies of HMMs. It also realizes an HMM-based TTS hav-

a voice quality controller [10] or a speaking style controller
. We apply that technique to the GMM-based conversion
od for realizing flexible VC from the source speaker, e.g., an
into arbitrary speakers. EVC is similar to the speaker inter-

tion proposed by Iwahashi and Sagisaka [8] in terms of using
nformation of multiple pre-stored speakers. EVC outperforms
view of the ability to convert any sample of the source to that
e target while the speaker interpolation can convert only fea-
segments included in the pre-stored database. Experimental
lts demonstrate that EVC works very well in the non-parallel
ing for arbitrary target speakers.
The paper is organized as follows. In Section 2, a framework
onventional VC is described. In Section 3, a framework of

is described. In Section 4, an experimental evaluation is de-
ed. Finally, we summarize this paper in Section 5.

2. Framework of Conventional
Voice Conversion (VC)

Parallel Training
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ng of D-dimensional static and dynamic features, where � de-
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T ] determined by Dynamic Time
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Figure 1: An example of converted trajectory. Black parts show
high conditional probability density areas.

where N(x; μ,Σ) shows the normal distribution with a mean vec-

tor μ and a covariance matrix Σ. The ith mixture weight is αi.
The total number of mixtures is M . The model parameters can be
estimated with the EM algorithm.

2.2. VC Based on MLE [5]

Let X =
ˆ
X�

1 , · · · , X�
T

˜�
be a time sequence of the source fea-

ture vectors, and let Y =
ˆ
Y �

1 , · · · , Y �
T

˜�
be that of the target

feature vectors. We perform the spectral conversion based on the
maximization of the following likelihood function,

p(Y |X , λ) =
P

{all m}
p(m|X , λ)p(Y |X , m, λ), (3)

where m = {mi1, mi2, · · · , miT } is a mixture sequence. At
frame t, p(mi|X t, λ) and p(Y t|X t, mi, λ) are given by

p(mi|X t, λ) =
wiN(X t; μ

(X)
i ,Σ

(XX)
i )PM

j=1 wjN(X t; μ
(X)
j ,Σ

(XX)
j )

, (4)

p(Y t|X t, mi, λ) = N(Y t; Et(mi), D(mi)), (5)

where

Et(mi) = μ
(Y )
i + Σ

(Y X)
i Σ

(XX)
i

−1
(X t − μ

(X)
i ), (6)

D(mi) = Σ
(Y Y )
i − Σ

(Y X)
i Σ

(XX)
i

−1
Σ

(XY )
i . (7)

A time sequence of the converted static features ŷ =ˆ
ŷ�

1 , · · · , ŷ�
T

˜�
is determined as follows:

ŷ = arg max p(Y |X , λ) subject to Y = W y, (8)

where W is a transformation matrix from static features into static
and dynamic features. The converted features can be estimated
with the EM algorithm. We may significantly reduce computation
time by approximating the likelihood function as p(Y |X , m̂, λ)
with the optimum mixture sequence m̂ that maximizes the poste-
rior probability p(m|X , λ).

Figure 1 shows an example of the converted trajectory on a
time sequence of the conditional probability density functions, i.e.,
the approximated likelihood function. Note that the trajectory on
the dynamic feature is derived from that on the static feature. This
conversion method estimates the converted static features with ap-
propriate both static and dynamic characteristics. We can consid-
erably improve the naturalness of converted speech by further con-
sidering GV of the converted static features [5].
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Figure 2: Training process of canonical EV-GMM.

3. Framework of Eigenvoice Conversion
(EVC)

his paper, we describe only an example of EVC from one
ce speaker to arbitrary target speakers, i.e., one-to-many VC.
may apply EVC to other cases such as many-to-one VC or
y-to-many VC.

Eigenvoice GMM (EV-GMM)

GMM represents the joint probability density in the same man-
as the conventional GMM shown in Eq. (2) except for a defi-
n of the target mean vector written as

μ
(Y )
i = Biw + b

(0)
i , (9)

re b
(0)
i is a bias vector for the ith mixture. The matrix

= [bi(1), · · · , bi(J)] consists of basis vectors bi(j) for the

ixture. The number of basis vectors is J . The target speaker
viduality is controlled with the J-dimensional weight vector

[w(1), · · · , w(J)]�. Consequently, the EV-GMM has a pa-

eter set λ(EV ) consisting of the single weight vector and pa-
eters for individual mixtures such as the mixture weights, the
ce mean vectors, the bias and basis vectors, and the covariance
rices.

Training of Canonical EV-GMM

rder to train a canonical EV-GMM, we use multiple parallel
sets. Each of them consists of utterance-pairs of the source
ker and one of the multiple pre-stored target speakers. A train-
process of the canonical EV-GMM is shown in Figure 2.
Firstly, we train a target independent GMM λ(0) simultane-
y using all of the multiple parallel data sets as follows:

λ
(0) = arg max

QS

s=1

QTS

t=1 p(X t, Y
(s)
t |λ), (10)

re Y
(s)
t is the feature vector of the sth pre-stored target speaker

ame t. The number of feature vectors for the sth speaker is Ts.
number of pre-stored target speakers is S.
Secondly, we train each target dependent GMM λ(s) by updat-

only target mean vectors μ
(Y )
i of the target independent GMM

using each of the multiple parallel data sets as follows:

λ
(s) = arg max

QTS

t=1 p(X t, Y
(s)
t |λ). (11)



In this paper, we employ the EM algorithm for the training of the
target independent GMM and the target dependent GMMs.

Lastly, we determine the bias vector b
(0)
i and the basis vectors

Bi. We prepare a (2D × M )-dimensional supervector SV (s) =

[μ
(Y )
1 (s)�, · · · , μ

(Y )
M (s)�]� for each pre-stored target speaker by

concatenating the target mean vectors μ
(Y )
i (s) of the target de-

pendent GMM λ(s). Note that the correspondence of mixtures
among all of the target dependent GMMs is obviously known be-
cause those GMMs are caused from the same target independent
GMM while tying several parameters. We extract the basis vec-
tors with principal component analysis (PCA) for the supervectors.
Consequently, the supervector is written as

SV
(s) � [B�

i , · · ·, B�
M ]�w

(s) + [b
(0)�
i , · · · , b

(0)�
M ]�, (12)

b
(0)�
i = 1

S

PS

s=1 μ
(Y )
i (s), (13)

where w(s) consists of principal components for the sth pre-stored
target speaker. Now, various supervectors, i.e., the target mean
vectors are created by varying only J(< S � 2D × M) free pa-

rameters of w. We construct the canonical EV-GMM λ(EV ) from
the resulting bias and basis vectors and the tied parameters, i.e., the
mixture weights, the source mean vectors, and the covariance ma-
trices. We may further update all of those parameters with the EM
algorithm in a Speaker Adaptive Training (SAT) paradigm [12].

3.3. EVC in One-to-Many VC

We perform EVC based on MLE in the same manner as mentioned
in Section 2.2. The conditional mean vector of the target for the

ith mixture in EVC is written as

E
(EV )
t (mi) = Biw + b

(0)
i +Σ

(YX)
i Σ

(XX)
i

−1
(X t − μ

(X)
i ). (14)

We can see that varying the weight vector w causes shifts of the
conditional mean vectors.

3.3.1. Non-Parallel (Unsupervised) Training

The EV-GMM for the conversion from the source speaker’s voice
to any target speaker’s voice is created by estimating the optimum
weight vector for the target speaker. Because only the target data
is used for the estimation, we don’t have to use the parallel data
of the source and the target. Furthermore, we don’t have to know
sentences uttered by the target speaker. Namely, the non-parallel
or unsupervised training for any target speaker is available.

We apply the maximum likelihood eigen-decomposition
(MLED) [9] to the weight vector estimation in EVC as follows:

ŵ = arg max
R

p(X , Y (tar)|λ(EV ))dX

= arg max
R

p(Y (tar)|λ(EV ))p(X |Y (tar), λ(EV ))dX

= arg max p(Y (tar)|λ(EV )), (15)

where Y (tar) is a time sequence of the target features for the train-
ing. Because the probability density is modeled with a GMM, we
iteratively maximize the following auxiliary function,

Q(w, ŵ) =
X

all m

p(m|Y (tar)
, λ

(EV )) log p(Y (tar)
, m|λ̂

(EV )
). (16)

The estimated weight vector is written as

ŵ =
nPM

i=1γ
(tar)
i B�

i Σ
(yy)
i

−1
Bi

o−1PM

i=1B
�
i Σ

(yy)
i

−1
Y

(tar)
i , (17)
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γ
(tar)
i =

PT

t=1 p(mi|Y
(tar)
t , λ(EV )), (18)

Y
(tar)
i =

PT

t=1 p(mi|Y
(tar)
t , λ(EV ))(Y

(tar)
t − b

(0)
i ). (19)

use the target independent GMM as an initial model.
An advantage of EVC compared with the constrained linear
ession approach [7] is the robust parameter estimation when
g a quite small amount of target data due to a smaller number
ee parameters to be estimated.

. Manual Control of Converted Speaker Individuality

other advantage of EVC is that we can flexibly control the
ker individuality of the converted speech by manually mod-
g the weight vector. This causes a novel framework of VC
ing fine tuning.

If we would like to control not only spectral parameters but
the other speech parameters such as an F0, it is possible to
ze the weight vector simultaneously affecting all of those pa-
eters by extracting basis vectors from supervectors consisting
eir mean vectors. It might be possible to improve the con-

ability for the converted speaker individuality by perceptually
gning the weight vector [11].

4. Experimental Evaluations
objectively evaluated the spectral conversion accuracy of EVC
pared with that of the conventional VC when varying the
unt of target training data.

Experimental Conditions

rder to train the canonical EV-GMM, we used 160 speakers
isting of 80 male and 80 female speakers as the pre-stored tar-

speakers. These speakers were included in Japanese Newspa-
Article Sentences (JNAS) database [13]. Each of them uttered
t of phonetically balanced 50 sentences. Because 7 sub-sets

uttered by them as shown in Table 1, we used a male speaker
included in JNAS as the source speaker, who uttered 10 sub-
including the 7 sub-sets. We automatically performed DTW
een utterances of the source and each pre-stored target speaker
reparing parallel data sets.
We performed voice conversion from the source speaker to
r 10 target speakers consisting of five male and five female
kers, who were not included in the pre-stored speakers. Every
ker uttered the sub-set J including 53 sentences. We varied the
ber of target training utterances from 1 to 32. The remaining
tterances were used for the evaluation. In the EVC, we es-
ted the weight vector of the canonical EV-GMM using only
target training data. In the conventional VC, we individually
ed GMMs for the conversion between the source and 10 target
kers using parallel training data sets.
We used mel-cepstrum as a spectral feature. The first through

mel-cepstral coefficients were extracted from 16 kHz sam-
g speech data. The STRAIGHT analysis method [14] was em-
ed for the spectral extraction.
In EVC, we used all eigenvectors (159 vectors) as the basis
ors without any loss of the information caused by truncating
nvectors. The number of mixtures of the EV-GMM was con-
tly set to 512. On the other hand, we optimized the number of
tures of the conventional GMM so that the mel-cpestral distor-
between the converted and target mel-cepstra was minimized



Table 1: The number of pre-stored target speakers uttering each
sub-set (A, B, · · · , or G). Each sub-set consists of phonetically
balanced 50 sentences.

Sub-sets A B C D E F G Total

Number of male speakers 15 11 15 13 15 11 0 80
Number of female speakers 15 11 15 13 12 0 14 80

Table 2: The optimum number of mixtures for each size of train-
ing data in the conventional VC. Each number shows the average
number of mixtures for 10 target speakers.

Number of utterance-pairs 1 2 4 8 16 32

Number of mixtures 7.6 18.4 20.8 54.4 76.8 224.0
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Figure 3: Mel-cepstral distortion as a function of the number of
target training utterances. We show mean distortions and its stan-
dard deviations for 10 target speakers.

in the evaluation set. Such an optimization was separately per-
formed for each target speaker and each size of training data. The
optimization results are shown in Table 2. We used the diagonal
covariance matrices for both GMMs.

4.2. Experimental Result

Figure 3 shows mel-cepstral distortion as a function of the number
of target training utterances. EVC outperforms the conventional
VC when using a small amount of training data. This is because
EVC effectively uses the information extracted from a lot of pre-
stored speakers as a prior knowledge.

We can see that in the conventional VC an increase of the
amount of training data causes a large decrease of the distortion.
The joint probability density is modeled more accurately as the op-
timum number of mixtures increases according to a larger number
of the training data as shown in Table 2. On the other hand, we
can see a tendency that the distortion decrease in EVC is not so
large when increasing more than two target utterances due to the
constant model complexity. Consequently, the conventional VC
outperforms EVC when using dozens of target utterances. Note
that EVC still has an advantage of unsupervised training compared
with the conventional VC even in such cases.

It is observed that inter-speaker variances of the distortion in
EVC are larger than those in the conventional VC. This might
be caused by setting several parameters of EV-GMM to those of
the target independent GMM. Applying SAT to the canonical EV-
GMM training is very promising.
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5. Conclusions
proposed a novel voice conversion (VC) framework called
nvoice conversion (EVC). We applied the eigenvoice tech-
e to the conversion method with a Gaussian mixture model
M) for realizing VC from a source speaker to arbitrary tar-
peakers (one-to-many VC). Statistics extracted from multiple
llel data sets consisting of the source’s voices and the multiple
stored target speakers’ voices were effectively used as a prior

ledge in EVC. We conducted an experimental evaluation on
pectral conversion accuracy. As a result, it was demonstrated
EVC works very well even if we have only a few utterances
e target speaker. We need to perform subjective evaluations of
onverted speech with EVC as well.
The proposed idea of constructing a canonical VC model from
tiple speaker-pairs’ data sets seems to cause explosive spread
C applications. We will apply it to various types of VC, e.g.,
y-to-one VC and many-to-many VC.

nowledgment: This research was supported in part by MIC
PE-S and MEXT e-Society leading project.
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turing speech representations using a pitch-adaptive time-frequency
smoothing and an instantaneous-frequency-based F0 extraction: pos-
sible role of a repetitive structure in sounds. Speech Communication,
Vol. 27, No. 3–4, pp. 187–207, 1999.


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Tomoki Toda
	Also by Yamato Ohtani
	Also by Kiyohiro Shikano
	------------------------------

