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Abstract

The conversion method from Non-Audible Murmur (NAM) to or-
dinary speech based on the statistical voice conversion (NAM-to-
Speech) has been proposed towards realization of “silent speech
telephone.” Although NAM-to-Speech converts NAM to intelligi-
ble voices with similar quality to speech, there is still a large prob-
lem, i.e., difficulties of the F0 estimation from unvoiced speech. In
order to avoid this problem, we propose a conversion method from
NAM to whisper that is a familiar and intelligible unvoiced speech
(NAM-to-Whisper). Moreover, we enhance NAM-to-Whisper so
that multiple types of body-transmitted unvoiced speech such as
NAM and Body Transmitted Whisper (BTW) are accepted as input
voices. We evaluate the performance of the proposed conversion
method. Experimental results demonstrate that 1) intelligibility
and naturalness of NAM are significantly improved by NAM-to-
Whisper, 2) NAM-to-Whisper outperforms NAM-to-Speech, and
3) we can train a single conversion model successfully converting
both NAM and BTW to the target voice.

Index Terms: silent speech telephone, body transmitted unvoiced
speech, voice conversion, F0 estimation, whisper

1. Introduction
Cellular phones have enabled us to communicate with each other
by speech whenever and wherever. However, it has caused a prob-
lem. Speech is recognized as “noise” by the other persons around
a speaker in some situations such as a meeting. In order to address
this problem, we aim to realize “silent speech telephone” allowing
speech communication annoying nobody in any situation based on
Non-Audible Murmur (NAM) sensor and voice conversion.

Nakajima et al. [1] found that air vibrations in the vocal tract
can be captured with a special acoustic sensor called NAM micro-
phone from a position behind the ear through only the soft tissues
of a head. Because of evading the transmission through obstruc-
tions such as bones whose acoustic impedance is quite different
from that of the soft tissues, this position allows a high-quality
recording of various types of body transmitted speech such as nor-
mal speech and considerably small whisper. Therefore, we focus
on NAM microphone rather than other sensor devices such as bone
microphone [2] and throat microphone [3].

We can actually talk in NAM while keeping silent. However,
it is hard to directly use NAM as a medium for human commu-
nication because of its less intelligibility and unfamiliar sounds.
Toda and Shikano [4] proposed the statistical voice conversion
method from NAM to ordinary speech (NAM-to-Speech) for ad-
dressing this problem. In advance, we train Gaussian mixture
models (GMMs) for representing correlations between acoustic
features of NAM and those of speech using a small number of
parallel data of NAM and speech, e.g., 50 utterance-pairs. Any
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ple of the features of NAM is converted to that of speech us-
the trained GMMs. NAM-to-Speech is a very useful technique

prove NAM in view of both intelligibility and voice quality.
ever, there is a remaining problem, i.e., the converted speech

unnatural prosody caused by difficulties of the estimation from
coustic spectral sequence of NAM to an F0 contour of speech.
ortunately, we have an impression that an achievement of the
stimation with acceptable quality is quite difficult.

We propose the voice conversion method from NAM to whis-
in this paper. We can avoid the F0 estimation by using not
ch but whisper as the target speech. Whisper is a familiar
iced speech and has enough intelligibility and naturalness.

ddition, we enhance NAM-to-Whisper so that the conversion
em widely accepts various kinds of body-transmitted unvoiced
ch such as NAM and Body Transmitted Whisper (BTW). Ex-
mental results demonstrate that NAM-to-Whisper works very
and both NAM and BTW are converted to the target speech

g the single conversion model.

The paper is organized as follows. In Section 2, we describe
transmitted unvoiced speech. In Section 3, the conversion

ods for improving NAM are described. In Section 4, the
ersion method accepting both NAM and BTW as an input is
ribed. In Section 5, experimental evaluations are described.
lly, we summarize this paper in Section 6.

2. Body Transmitted Unvoiced Speech:
NAM and BTW

focus on two kinds of body transmitted unvoiced speech, i.e.,
and BTW, in this paper. NAM is defined as articulated respi-

ry sounds without vocal-fold vibration transmitted through the
tissues of the head [1]. Anyone around a speaker hardly hears

because its power is extremely small. On the other hand,
is defined as whisper transmitted through the soft tissues of

ead. We can communicate with some limited number of per-
nearby using whisper because its power is enough large. In

r to generate unvoiced source signals with enough power, we
rally use the turbulent noise of expiratory air produced by the
ture of the glottis in uttering whisper. NAM often becomes
per especially under noisy environments because we need to
own voice for speaking.

Figure 1 shows an example of waveforms and spectrograms of
and BTW. Those signals are recorded the NAM microphone

d Open Condenser Mediated with Soft Silicone (OCMSS)
[5]. We can see differences of not only a total power but

frequency components around 5 kHz between NAM and whis-
They might be caused by the stricture of the glottis. Higher

uency components of body transmitted speech usually disap-
because it doesn’t include radiation characteristics from lips

it is affected by low-pass characteristics of the body transmis-
. Consequently, some phonemes with large power on higher
uency bands such as unvoiced fricatives often lose their spe-
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(a)Waveform and spectrogram of NAM
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(b)Waveform and spectrogram of BTW
Figure 1: An example of waveforms and spectrograms of body
transmitted unvoiced speech.

cific characteristics.

3. Voice Conversion Methods for NAM
We employ the statistical voice conversion method with a GMM
[6] for improving intelligibility and naturalness of NAM.

3.1. Conversion with Maximum Likelihood Estimation [7]

We train a GMM for representing the joint probability density of
input and output features using around 50 utterance-pairs of input
and output voices [8]. Once we train the GMM, we can convert
any sample of the input feature to that of the output feature. In the
conversion, we determine a time sequence of conditional proba-
bility density functions (pdfs) of the output features for the given
input feature sequence based on the GMM. And then, we estimate
the output feature sequence that maximizes likelihoods of the con-
ditional pdfs. The conversion accuracy is improved by maximizing
likelihoods on both static and dynamic features with respect to the
output static features considering an explicit relationship between
those features. Furthermore, the naturalness of converted speech
is significantly improved by considering global variance (GV) of
the output feature trajectory [7].
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Figure 2: Conversion Process of NAM-to-Speech.

NAM

ectral
uence

Spectral
 sequence

Filtering

Whisper

MLE

Segmental feature sequence
Combining

multiple frames

Feature extraction

GMM for spectral estimation

White noise

Figure 3: Conversion Process of NAM-to-Whisper.

NAM-to-Speech [4]

nversion process of NAM-to-Speech is shown in Figure 2.
an use only spectral features as an input feature because NAM
voiced. In order to synthesize speech, we need to estimate not
spectral features but also source features such as F0s from
spectra.

We construct a spectral segment feature at each frame by con-
nating spectral vectors at current, preceding and succeeding
es for compensating for lost characteristics at some phonemes
entioned in Section 2. We use three GMMs for converting the
ent feature of NAM to three speech features, i.e., the spec-
, the F0 including unvoiced/voiced (U/V) information, and an
iodic component capturing noisy strength on each frequency
of the source signal. We design a mixed excitation based on

estimated F0 and aperiodic components [11]. And then, we
hesize the converted speech by filtering the mixed excitation
the estimated spectra.

NAM-to-Whisper

nversion process of NAM-to-Whisper is shown in Figure 3.
rder to synthesize whisper, we need to estimate only spectral
res from NAM spectra because we just use white noise as

source signal of unvoiced speech. The spectral estimation is
ormed in the same manner as in the NAM-to-Speech.

Main advantage of this conversion is that we don’t have to
ate F0s. Another advantage is that spectral characteristics of

per are more similar to those of NAM than those of speech.
re 4 shows standard deviations of mel-cepstral coefficients
eech, whisper, and NAM. We can see that the deviations of

per are smaller than those of speech especially at the 0th and
oefficients. The large deviations of speech might be caused by
variations of a total power and a spectral tilt of speech due to
changes. NAM-to-Speech seems more difficult process than
-to-Whisper even in the spectral estimation.
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Figure 4: Standard deviations of mel-cepstral coefficients. We cal-
culate them at speech frames except for silence frames of 50 utter-
ances.

4. Simultaneous Modeling of NAM and BTW
It is practical to deal with not only NAM but also other speaking
styles, e.g., BTW, as an input form of “silent speech telephone”
because we select an appropriate speaking style according to situ-
ations such as noisy conditions.

One solution is that users switch a proper conversion system
according to the current speaking style. In order to cope with NAM
and BTW, we need to use two conversion systems for NAM-to-
Whisper and for converting BTW to Whisper (BTW-to-Whisper).
The model for BTW-to-Whisper is trained using a parallel data
set consisting of utterance-pairs of BTW and whisper in the same
manner as in the model for NAM-to-whisper.

Another solution is to construct a single conversion system
accepting multiple input speaking styles. This is more convenient
for users than the former solution. We train a GMM for simultane-
ously modeling the joint probability of acoustic features of NAM
and whisper and that of BTW and whisper using two parallel data
sets, i.e., utterance-pairs of NAM and whisper and those of BTW
and whisper. The resulting GMM converts the acoustic features of
both NAM and BTW into those of whisper. It is possible to apply
the simultaneous modeling to the conversion from NAM and BTW
to speech as well.

5. Experimental Evaluations
We evaluated the performance of NAM-to-Whisper compared with
that of NAM-to-Speech. Moreover, we performed objective evalu-
ations for investigating the effect of the simultaneous modeling of
NAM and BTW.

5.1. Experimental Conditions

We used NAM, BTW, whisper and speech uttered by a Japanese
female speaker. There were 149 utterances in each. We used 64
utterances for the training and remaining 85 utterances for the eval-
uations.

The 0
th through 24

th mel-cepstral coefficients were used as
a spectral feature at each frame. The mel-cepstral analysis [9]
was employed for unvoiced speech, i.e., NAM, BTW, and whis-
per. On the other hand, STRAIGHT analysis [10] was employed
for speech. We used the 50 dimensional spectral segment feature
compressed with PCA at each input frame [4]. As source features
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Table 1: Result of intelligibility test.

Word Word Number
correct [%] accuracy [%] of replays

eech 94.65 94.13 1.91

hisper 91.46 91.08 2.09

M 45.90 45.25 4.33

M-to-Speech 71.77 69.79 3.23

M-to-Whisper 75.85 75.71 3.03

peech, we used a log-scaled F0 and aperiodic components on
frequency bands, i.e., 0-1, 1-2, 2-4, 4-6, and 6-8 kHz, which
used for designing the mixed excitation [11].

We trained the following six conversion models:

AM2Sp for converting NAM to speech,

AM2Wh for converting NAM to whisper,

TW2Sp for converting BTW to speech,

TW2Wh for converting BTW to whisper,

AM+BTW)2Sp for converting NAM and BTW to speech,

AM+BTW)2Wh for converting NAM and BTW to whisper.

the simultaneous modeling, i.e., (NAM+BTW)2Sp and
M+BTW)2Wh, we used double-sized training data compared
the others. We optimized the number of mixtures of each

M and the number of concatenated frames for the spectral seg-
t feature so that the feature conversion accuracy was mini-
d in the evaluation set.

Evaluations of NAM Conversion Methods

performed perceptual evaluations on intelligibility and natural-
of the following five voices: 1) analysis-synthesized speech,

nalysis-synthesized whisper, 3) analysis-synthesized NAM, 4)
-to-Speech voice with NAM2Sp, and 5) NAM-to-Whisper

e with NAM2Wh.

. Intelligibility

performed a perceptual test on the intelligibility by dictation.
allowed listeners to replay the same stimulus time after time.
Japanese listeners who have never listened to NAM partici-
d in the test. We used 50 sentences in the evaluation set.
Table 1 shows word correct, word accuracy, and the average
ber of replays by listeners. The voice conversion considerably
roves intelligibility of NAM. We can see an interesting result
NAM-to-Whisper causes more intelligible voices than NAM-
peech. This might be caused by the better spectral conversion
racy in NAM-to-Whisper compared with in NAM-to-Speech

escribed in the following section. Moreover, NAM-to-Whisper
t affected by the U/V estimation error causing word insertion

rs as shown in the result of NAM-to-Speech.

. Naturalness in terms of human voices

performed an opinion test on the naturalness in terms of not
nary speech but human voices using a 5-point scale. Five
nese listeners who have never listened to NAM participated
e test. Each listener evaluated 25 sentences randomly selected
the evaluation set for each voice.

Figure 5 shows a result of the test. NAM-to-Whisper causes
dmirable improvement of the naturalness. The converted voice
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Figure 6: Spectral conversion accuracy of each conversion model
for body transmitted unvoiced speech.

has the same naturalness as whisper. On the other hand, NAM-to-
Speech causes the naturalness degradation. Although the NAM-
to-Speech voice has much more similar voice quality to ordinary
speech compared with NAM [4], it has an unnatural F0 contour
making listeners feel that it doesn’t sound human voices very well.

From those results, it is demonstrated that NAM-to-Whisper
is very useful method for improving NAM.

5.3. Evaluations of Simultaneous Modeling of NAM and BTW

We objectively evaluated the performance of each conversion
model for investigating the effect of the simultaneous modeling.

Figure 6 shows mel-cepstral distortion when using each con-
version model. Inconsistency of input speaking styles in the train-
ing and the conversion processes causes large degradation of the
conversion accuracy. The simultaneous modeling is very effective
for addressing that problem. As for the conversion into speech, we
also shows the source feature conversion accuracies in Fig. 7. We
can see the same results as in the spectral conversion.

It is shown that the mel-cepstral distortion in the conversion
into whisper is much smaller than that in the conversion into
speech. Namely, the spectral conversion between unvoiced voices
is much easier than that between unvoiced and voiced ones.

6. Conclusions
We proposed a statistical conversion method from Non-Audible
Murmur (NAM) to whisper (NAM-to-Whisper) for avoiding a
problem of the conversion from NAM to Speech (NAM-to-
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el from body transmitted unvoiced speech to ordinary speech.

ch), i.e., difficulties of the F0 estimation from unvoiced
ch. We also proposed a training method of a single conver-
model allowing both NAM and Body Transmitted Whisper

W) as an input. We evaluated the performance of the proposed
ods. Experimental results demonstrated that 1) intelligibility
naturalness of NAM are considerably improved by NAM-to-
sper, 2) NAM-to-Whisper outperforms NAM-to-Speech, and
oth NAM and BTW are successfully converted to the target
e using the single conversion model.
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