
Sequence Classification for M

Srinivas Bangalore, Patrick Haff

AT&T Labs-Res
180 Park Av

Florham Park, NJ
{srini,haffner,kanthak}@a

Abstract
Discriminatively trained classification techniques have been
shown to out-perform generative techniques on many speech and
natural language processing problems. However, most of the re-
search in machine translation has been based on generative mod-
eling techniques. The application of classification techniques to
machine translation requires scaling classifiers to deal with very
large label sets (the vocabulary of the target language). In this pa-
per, we present a method to scale classifiers to very large label sets
and apply it to train classifiers for machine translation. We contrast
this approach to a generatively trained machine translation model
represented as a weighted finite-state transducer. We show trans-
lation accuracy results on spoken language corpora in English to
Spanish and English to Japanese translation tasks.
Index Terms: Machine Translation, Disciminant classification,
Stochastic finite-state transducer based machine translation.

1. Introduction
Discriminatively trained classification-based techniques have be-
come the dominant approach for resolving ambiguity in speech
and natural language processing problems. Although these tech-
niques originated for document routing tasks which use features
from the entire document, they have also been successfully applied
to word-level disambiguation tasks such as part-of-speech tagging,
named-entity tagging, and dependency parsing tasks which rely on
features in the local context of a word. Models trained using these
approaches have been shown to out-perform generative models as
they directly optimize the conditional distribution without model-
ing the distribution of the independent variables.
However, most of machine translation research has focused on

generative modeling techniques. Discriminative training has been
used only for model combination [1] but not directly to train the
parameters of a model. Applying discriminatively trained classifi-
cation techniques directly to estimate the parameters of a transla-
tion model requires scaling the classifiers to deal with very large
label sets, typically the size of the target language vocabulary. In
this paper, we present a method for scaling the classifiers to such
large label sets and apply it to train machine translation models for
spoken language translation tasks.
There have been several attempts at exploiting syntactic infor-

mation in a generative modeling framework to improve the accu-
racy of machine translation [2]. However, these approaches have
met with only marginal success at best. We believe that the dis-
criminative classification framework is more suitable for exploit-
ing such linguistically rich information as they do not model the
distribution of independent variables and hence are not affected by
sparseness issues that typically affect generative models.
The outline of the paper is as follows. In Section 2, we review

statistical machine translation models and the alignment training
method that is needed for this approach. We present the different
types of decoders that are used for statistical machine translation
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ection 3 and focus on weighted finite-state transducer based
der in Section 4. In Section 5, we present different sequence
sification techniques and in Section 6, we compare the perfor-
ce of different translation models on spoken language corpora
nglish to Spanish and English to Japanese translation tasks.

. Statistical Machine Translation Model
achine translation, the objective is to map a source symbol
ence S = s1, . . . , sN (si ∈ LS) into a target sequence
t1, . . . , tM (ti ∈ LT ). This can be formulated as a search for
est target sequence that maximizes P (T |S). Ideally, P (T |S)
ld be estimated directly to maximize the conditional likeli-
on the training data (discriminant model). However, T cor-
onds to a sequence with a exponentially large combination of
ible labels, and traditional classification approaches cannot be
directly. To overcome this problem, Bayes transformation is
ied and generative techniques are adopted as suggested in the
y channel paradigm [3]. The sequence S is thought as a noisy
ion of T and the best guess T ∗ is then computed as

T
∗ = arg max

T
P (T |S) (1)

= arg max
T

P (S|T )P (T ) (2)

The translation probability P (S|T ) is estimated from a corpus
lignments between the tokens of S and tokens of T . Although
e have been several approaches to alignment – string-based
tree-based alignment, for the purposes of this paper, we use
++ [4] to provide an alignment between tokens of the source
uage and tokens of the target language. Using the same source
lignments there have been several variations on decoders to
pute the best T ∗ given an input source string S. We discuss
e of these decoders in the next section.

3. Decoders for Machine Translation
ations 1 and 2 can be interpreted in different ways which re-
in different decoder architectures. We outline below these
der architectures.

Conditional Probability Model based Decoders

g conditional probability models as in Equation 2 has the ad-
age of composing the translation process frommultiple knowl-
sources that could be trained independently. Kumar and
e [5] have shown that the translation process can be fur-
decomposed into five models, namely source language model,
ce segmentation model, phrase permutation model, template
ence model and phrasal translation model. As all models are
ed independently, different data sets may be used for the esti-
on of each. Other examples for decoders based on conditional
abilities can be found in [3, 4, 6, 7, 8].
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3.2. Joint Probability Model based Decoders

The FST-based decoders as illustrated in [9, 10, 11, 12], decode
the target string using a joint probability model P (S, T ) from the
bilanguage corpus. The bilanguage could be in either source word-
order or target word-order. This gives rise to two different two-
stage decoders. As shown in Equation 3, first the source string
is mapped to a target string in the source word-order. The target
string is computed as the most likely string based on the target lan-

guage model from a set of possible reorderings of T̂ (Equation 4).

T̂ = arg max
T

P (S, T ) (3)

T̂
∗ = arg max

T∈λ
T̂

PλT
(T̃ ) (4)

In a different version of the decoder, a set of possible reorder-
ings (λS) of the source string is decoded, instead of reordering the
decoded target string, as shown in Equation 5.

T
∗ = arg max

T

∑

Ŝ∈λS

P (Ŝ, T ) (5)

3.3. Sentence-Based Feature Combination

Relaxing the conditional probability approach to also allow for un-
normalized models leads to a sentence-based, exponential feature
combination approach (also called log-linear model combination):

T
∗ = arg max

T

∑

i

λi · hi(S, T ) (6)

The choice of features is virtually unlimited, but using the ap-
proach to tune just the exponents of the conditional probability
models in use proves to be quite effective (see also [13, 7, 8]).
Crego et.al [12] presents a similar system based on joint probabil-
ities.

4. Finite-state Transducer based Machine
Translation Model

In this section, we explain the steps to build a finite-state ma-
chine translation model. We start with the bilingual alignment
constructed using GIZA++, shown in Figure 1. The Alignment
string provides the position index of a word in the target string for
each word in the source string. Source words that are not mapped
to any word have an index 0 associated to them. It is straightfor-
ward to compile a bilanguage corpus consisting of source-target
symbol pair sequences T = . . . (wi : xi) . . ., where the source
word wi ∈ LS ∪ ε and its aligned word xi ∈ LT ∪ ε (ε is the
null symbol). Note that the tokens of a bilanguage could be either
ordered according to the word order of the source language or or-
dered according to the word order of the target language. Figure 2
shows an example alignment and the source-word-ordered bilan-
guage strings corresponding to the alignment shown in Figure 1.
From the corpus T , we train a n-gram language model using lan-
guage modeling tools [14, 15]. The resulting language model is
represented as a weighted finite-state automaton (S×T → [0, 1]).
The symbols on the arcs of this automaton (si ti) are interpreted
as having the source and target symbols (si:ti), making it into a
weighted finite-state transducer (S → T × [0, 1]) that provides a
weighted string-to-string transduction from S into T (as shown in
Equation 7).

T
∗ = argmaxT P (si, ti|si−1, ti−1 . . . si−n−1, ti−n−1) (7)

Fi
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gure 1: Example bilingual texts with alignment information

re 2: Bilanguage strings resulting from alignments shown in
re 1.

5. Sequence Classification Techniques
discussed earlier, Equation 1 represents a direct method for
sducing the source language string into the target language
g. It depends on estimates of P (T |S). Learning would con-
in modifying the parameters of the system so that T ∗ closely

hes the target output sequence T̃ . Ideally, P (T |S) should be
ated directly to maximize the conditional likelihood on the
ing data (discriminant model). However, T corresponds to a
ence output with a exponentially large combination of possi-
abels, and traditional classification approaches cannot be used
ctly. Although, Conditional Random Fields (CRF) [16] train
xponential model at the sequence level, in translation tasks
as ours the computational requirements of training such mod-
s prohibitively expensive.
We approximate the string level global classification problem,
g independence assumptions, to a product of local classifica-
problems as shown in Equation’s 8.

P (T |S) =

N∏

i

P (ti|Φ(S, i)) (8)

re Φ(S, i) is a set of features extracted from the source string
hortened as Φ in the rest of the section).
A very general technique to obtain the conditional distribution
i|Φ(S, i)) is to choose the least informative one (with Maxent)
properly estimates the average of each feature over the training
[17]. This gives us the Gibbs distribution parameterized with
eights λt where t ranges over the label set and V is the total
ber of target language vocabulary.

P (ti|Φ) =
eλti

·Φ

∑V

t=1
eλt·Φ

(9)

The weights are chosen so as to maximize the conditional like-
od L =

∑
i
L(si, ti) with

L(S, T ) =
∑

i

log P (ti|Φ) =
∑

i

log
eλti

·Φ

∑V

t=1
eλt·Φ

(10)

The procedures used to find the global maximum of this
ave function include two major families of methods: Iter-
Scaling (IS) and gradient descent procedures, in particu-
-BFGS methods [18], which have been reported to be the
st. We obtained faster convergence with a new Sequential
egularized Maxent algorithm (SL1-Max) [19], compared to

FGS1. We have adapted SL1-Max to conditional distributions

http://homepages.inf.ed.ac.uk/s0450736/maxent toolkit.html

nglish: I need to make a collect call
apanese:
lignment: 1 5 0 3 0 2 4

I: need: to: make:
a: collect call



for our purposes. Another advantage of the SL1-Max algorithm is
that it provides L1-regularization as well as efficient heuristics to
estimate the regularization meta-parameters. The computational
requirements are O(V ) and as all the classes need to be trained
simultaneously, memory requirements are also O(V ). Given that
the actual number of non-zero weights is much lower than the total
number of features, we use a sparse feature representation which
results in a feasible runtime system.

5.1. Frame level discriminant model: Binary Maxent

For the machine translation tasks, even allocating O(V ) memory
during training exceeds the memory capacity of current comput-
ers. To make learning more manageable we factorize the frame-
level multi-class classification problem into binary classification
sub-problems. This also allows for parallelization during training
the parameters. We use here V one-vs-other binary classifiers at
each frame. Each output label t is projected into a bit string, with
components bj(t). The probability of each component is estimated
independently:

P (bj(t)|Φ) = 1 − P (b̄j(t)|Φ) =
1

1 + e−(λj−λj̄)·Φ
(11)

where λj̄ is the parameter vector for b̄j(y). Assuming the
bit vector components to be independent, we have P (ti|Φ) =∏

j
P (bj(ti)|Φ). Therefore, we can decouple the likelihood and

train the classifiers independently. In this paper, we use the sim-
plest and most commonly studied code, consisting of V one-vs-
others binary components. The independence assumption states
that the output labels or classes are independent.

5.2. Maximum Entropy Markov Models or MEMMs

The independence assumption in Equation 8 is very strong,
and one can add more context, replacing P (ti|Φ(S, i)) with
P (ti|ti−1, Φ(S, i)) (bigram independence). While MEMMs [20]
allow the use of frame-level Maxent classifiers that learn se-
quence dependencies, they usually multiply by a factor V the ac-
tual number of input features (factor which propagates down to
both memory and learning time requirements). Also, MEMMs es-
timate P (ti|ti−1, Φ(S, i)) by splitting into |V | separate models
Pti−1

(ti|Φ(S, i)). This causes a new problem known as labeling
bias [21]: important frame-level discriminant decisions can be ig-
nored at the sequence level, resulting in a loss of performance [22].

5.3. Dynamic Context Maximum Entropy Model

We believe that the label bias problem arises due the manner
in which P (ti|ti−1, Φ(S, i)) is estimated. The estimation of
Pti−1

(ti|Φ(S, i)) requires splitting the corpus based on the ti−1

label. This leads to incompatible event spaces across the label
set during estimation. In order to alleviate this problem, we use
the dynamic context as part of the feature function and compute
P (ti|Φ(S, i, ti−1)). We call this the dynamic context model since
the features are to be computed dynamically during decoding, in
contrast to the static context model presented in Section 5.1 where
the features can all be computed statically from the input string.

6. Experiments and Results
We evaluate the translation models on two different spoken lan-
guage corpora. First, the “HowMay I Help You” (HMIHY) corpus
consists of operator-customer conversations related to telephone
services. We use the transcriptions of the customer’s utterance
which were also manually translated into Japanese and Spanish.
The corpus statistics for English-Japanese sentence pairs are given
in Table 1. 5812 English-Spanish sentence pairs were used for
training, and 829 for testing.
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English Japanese

Train Sentences 12226
Words 83262 68202
Vocab 2189 4541

Test Sentences 3253
Words 20533 17520
Vocab 829 1580

Table 1: Corpus Statistics for the HMIHY Corpus

The second corpus, ATIS, consists of inquiries to airline reser-
ns services which have been manually transcribed and trans-
into Spanish. The corpus statistics are given in Table 2.

English Spanish

Train Sentences 11294
Words 116151 126582
Vocab 1310 1556

Test Sentences 2369
Words 23469 25538
Vocab 738 841

Table 2: Corpus Statistics for the ATIS Corpus

The accuracy of the translation models are evaluated using
word accuracy metric. Simple accuracy is computed based
he number of insertion (I), deletion (D) and substitutions (S)
rs between the target language strings in the test corpus and
trings produced by the translation model.

WordAccuracy = (1 −
I + D + S

R
) ∗ 100 (12)

The word accuracy results of the translation models on the dif-
nt corpora are shown in Table 6. We show the baseline model
lecting the most frequent target word for a given source word.
an be seen from the table, the FST-based model outperforms
aseline significantly, but the sequence classification based de-
r trained using Maxent training performs better than the FST
d decoder on all three corpora.

Domain Baseline FST Maxent SVM SVM
(static) linear poly2

HMIHY
Eng-Jap 59.5 68.6 70.2 69.1 69.7
HMIHY
g-Spanish 58.6 70.4 71.2 70.2 70.6
ATIS
g-Spanish 54.5 76.5 78.7 78.6 79.1

The classification approach regards the target words, phrases
lti-tokens) and null symbol (epsilon) as labels. For instance,
ATIS training data contains 336 epsilon labels, 503 phrase la-
and 2576 word labels. Using contextual maxent rather than
c maxent significantly improves the label classification accu-
(from 65% to 67%).
However, in order to evaluate the word accuracy of the trans-
string, the classified labels are re-transcribed as words by
oving epsilon label and expanding out multi-token labels. We
rved no significant difference in word accuracy between the
slations provided by static context and dynamic context Max-
odels after these transformations.
We conjecture that the loss function we use for the classifier
not properly represent the final objective function. Misclassi-
ion between two phrase labels has a variable cost, depending



on the number of words which differ from one phrase to the other,

and this is not accounted for in our loss function.2

Another way to improve performance is to increase the repre-
sentation power of the static classifier. We first ran linear SVMs
which are the same linear classifiers as Maxent with a different
training procedure. The lower word accuracy observed with lin-
ear SVMs in Table 6 is explained by an over-detection of words
against the epsilon model. The recognized class is obtained by
comparing one-versus-other models, and their threshold value re-
quires to be more carefully adjusted, for instance using an addi-
tional univariate logistic regression [23]. The fact that we observe
an improvement from linear to second degree polynomial SVMs
shows that the use of kernels can improve performance.

7. Conclusion
In this paper, we have presented an approach to sequence classifi-
cation for machine translation. In contrast to previous approaches
that use generative methods to estimate the translation probabil-
ity, we employ discriminative techniques that classify each source
word and its context into a target word. We address the challenge
of scaling classifiers to large label sets by assuming independence
among the output label set. We show results on different spoken
language corpora for English to Spanish and English to Japanese
translation tasks.
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L. Bottou, Une Approche théorique de l’Apprentissage Con-
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