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Abstract
In this paper we investigate the use of articulatory data for speech
recognition. Recordings of the articulatory movements originate
from the MOCHA corpus, a database which contains speech,
EGG, EMA and EPG recordings. It was found that in a Hidden
Markov Model (HMM) based recognition framework careful pro-
cessing of these signals can yield significantly better performance
than that obtained by decoding of the acoustic signals. We present
detailed results on the processing of the signals and the associ-
ated performance of monophone and triphone systems. Experi-
mental evidence shows that acoustic-signal-to-word mappings and
articulatory-signal-to-word mappings are equally complex. How-
ever, for the latter, evidence of short-comings of standard HMM
based modelling is visible and should be addressed in future sys-
tems.

Index Terms: articulatory representations, speech recognition.

1. Introduction
To find a robust and optimal speech representation for speech
recognition has been a long standing objective in the research com-
munity. Recently, the interest in using articulatory features has
been growing. Previous studies have found that articulatory fea-
tures are more robust to noise than acoustic representations [1].
Our first goal towards the design of acoustic-to-articulatory map-
ping methods is to investigate whether articulatory representations
contain sufficient information to be of use for speech recognition.

Standard front-ends in speech recognition systems are usually
based on representations that are only moderately related to speech
production mechanisms. In the source-filter model of speech pro-
duction, the source represents the air flow at the vocal cords, and
the resonances of the vocal tract are represented by the filter. This
model has led to design methods of source-filter separation from
the speech signal. Cepstral analysis and linear prediction are com-
mon source-filter separation methods. Despite their limitations to
obtain proper representations of vocal tract resonances [2], they
have been used to obtain most standard acoustic representations
such as Mel Frequency Cepstral Coefficients (MFCC) [3] and Per-
ceptual Linear Prediction coefficients (PLP) [4]. Although the
main motivation for MFCC and PLP is to model perceptual be-
haviour.

Measurements of the location and movement of the articu-
lators and the vocal cords should, in theory, contain sufficient
information to reconstruct the speech signal and hence can be
thought of as representation in very compact form. However, in
practice the measurements are constrained to certain key compo-
nents (for example the position of the tongue tip) rather than the
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plete speech production organ configuration. It is not known
ther, even with correct modelling of parameter movement, op-
l recognition performance can be achieved. Hence recognition
rs will be caused by measurement techniques as well as param-
modelling. Experiments in this paper make use of recordings
ided in the MOCHA corpus [5] which provides high quality
rdings of the main parameters (see below).

Acoustic representations for speech recognition have been de-
ped and optimised in the recent years [1]. In contrast, there
tle experience in using articulatory representations of speech.
very likely that similar efforts to those that led to the devel-
ent of the currently popular acoustic representations based on
C or PLP coefficients may be necessary to obtain optimal

esentations of articulatory data.

In this paper, we compare the use of articulatory representa-
s with the use of acoustic representations for the task of speech
gnition with the objective of understanding the basic proper-
of underlying parameters governing speech generation. Con-
to previous experience, we found that the use of articulatory

esentations outperforms recognition with standard MFCC fea-
s. Analysis of the results suggests that further improvement
ld be achievable by improving the modelling of voicing and
r handling of temporal variation.

The rest of the paper is organised as follows: a brief overview
e MOCHA corpus precedes an outline of our baseline recogni-
system. Then details on feature pre-processing of articulatory
are presented, followed by an analysis of experimental results.
final section provides a summary and conclusions.

2. The MOCHA corpus
Multi-Channel Articulatory speech database (MOCHA) con-
of parallel acoustic speech and articulatory data [5]. The ar-
atory data consists of recordings of electro-magnetic articulo-
h (EMA), electro-glottograph (EGG) and electro-palatograph

G) signals. The EMA data is a 14-channel signal including x
y coordinates of 7 pellets positioned at the soft palate, tongue
um, tongue blade, tongue tip, jaw, upper and lower lips. The

signals provide additional information by measuring binary
ue-palate contact data at 62 location-normalised positions on
ard palate. Finally, the EGG measures changes in the contact
of the vocal folds.

While the original MOCHA recordings covered 25 speakers,
data from 3 speakers are currently available in fully pro-

ed and annotated form. 460 sentences from each speaker were
rded. The corpus includes automatically-generated phone-
l transcriptions and a keyword dictionary. The phonetic tran-
tions make use of a phonetic alphabet of 46 symbols (44 En-
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glish phones, silence and breath) with pronunciations selected to
specifically cover the speaker’s accent. For comparison with pre-
vious work [5] and to avoid problems related to inter-speaker vari-
ations due to vocal tract anatomical differences, experiments in
this paper make use of data from only one British English female
speaker (fsew0) which covers about 30 minutes of speech.

3. Baseline system
An acoustic representation based on 39-dimensional feature vec-
tors was extracted from the speech signals provided in the fsew0
data set (MOCHA). These vectors consisted of 12 MFCC features
plus acoustic energy (AcE), computed every 10ms over a 25ms
window, as well as their first and second order derivatives. All sys-
tems presented in this paper are based on standard Hidden Markov
models and N-gram models (where appropriate) and make use of
standard HTK [6] for training and testing. The recognition sys-
tems constructed for this data are closely related to our baseline
system for the TIMIT database. With the procedure outlined be-
low the best system performance on the TIMIT core test set was
an accuracy of 73.7% which is a very competitive performance for
non-discriminatively trained systems. The acoustic training proce-
dure involves maximum likelihood training of 3 state left to right
monophone models from scratch. Models are trained using a stan-
dard HTK mix-up procedure [6]. Breath models are excluded from
both training and testing and all breath segments are merged with
silence. The phone time boundaries provided with the transcrip-
tions are only used in the model initialisation phase. Triphone
models are initialised from monophone models using 2 model re-
estimation [6]. State clustering with phonetic decision trees and
the mix-up procedure yield the final model sets.

Due to the small amount of data the complete fsew0 data
set was split into five equally-sized subsets and five-fold cross-
validation was used for training and testing. Recognition perfor-
mance is computed as average over the five sets. Cepstral mean
normalisation was used in all experiments in this paper. Table 1

Dim Acoustic model Phone LM %PER

39 Monophone TIMIT 35.7
39 Monophone MOCHA 32.8
39 Triphone MOCHA 30.0

Table 1: Phone error rate (%PER) for systems operating on acous-
tic features.

shows phone error rate (PER) results using phone bigram language
models obtained from TIMIT or MOCHA. Even though TIMIT
contains much more data the difference in accent is evident from
improvement when using bigrams trained on MOCHA data. All
acoustic models were trained using 4/5 of data (fsew0). The low-
est phone error rate (30%) was obtained with a triphone system
(which we refer as MFCC39).

4. Recognition using articulatory information
Speech recognition systems using articulator input operate in ex-
actly the same way as those described in section 3. The systems
only differ in terms of input feature representation. The cluster-
ing thresholds in phonetic decision tree state-tying are set to yield
an approximately identical number of states for each system. This
can lead to an increase in the number of parameters when using
higher dimensional feature vectors. However, in all of the cases
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re 1: Sentence “This was easy for us”. Speech waveform,
gy contour of EGG signal and acoustic energy (AcE) contour.

rved, an increase of the number of parameters of the baseline
em did not lead to significant performance improvement.

Articulatory data representation

EMA data consists of x and y coordinate pairs of the moving
ts, recorded with a sampling rate of 500Hz. Closer inspection

als mostly the presence of noise in frequencies above 50Hz
luding a strong 50Hz power supply component). Hence a third
r Butterworth filter with a cutoff frequency of 45Hz was ap-
to each recording and the signal was downsampled to 100Hz,

tical to the MFCC frame rate. The EPG data comes in the form
2 binary signals sampled at 200Hz. Assuming that the location
extent of touch of the main tongue body constitutes the essen-
information, means and variances in both x and y direction are
puted on a per frame basis, thus yielding 4 parameters without
er filtering. The EPG parameters are downsampled to 100Hz.

Energy components

EGG recordings allow inclusion of reliable voicing informa-
in the recognition process. Since larynx movement informa-
is thought to be of little relevance for recognition the signal
filtered using a bandpass filter with lower and higher cut-off

uencies at 60Hz an 105Hz respectively. After filtering, the raw
gy was computed every 10ms over a 25ms window. In addi-
, a signal corresponding to the raw pressure energy originating

the lungs would be required. Since such a signal is not avail-
the raw acoustic energy, identical to that used in the acoustic

em (see section 3), was used. Figure 1 shows both energy sig-
for a sample utterance. It is clear that the EGG energy signal
oximates binary voicing information whereas acoustic energy
ns information in unvoiced parts.

Phone recognition experiments

eriments were conducted with different combinations of the
ulatory features described above. Table 2 shows phone error
for monophone and triphone models. All monophone mod-

ave exactly the same number of states, while in all triphone
els this can only be achieved approximately. Note that within
experiment five different model sets with five slightly differ-

numbers of parameters are trained. In all cases the number of
meters is a function of the feature vector dimension. The di-
sion is noted in the table, and includes first and second order
vatives for all static features. EMA data alone yields a perfor-
ce substantially poorer than that shown in Table 1. The addi-
of EGG energy data yields a 16% relative reduction in PER,
which 8% is due to the application of the band pass filter-

to the EGG signal. This can be further improved by adding



D System EMA EPG EGG AcE Mono Tri

42 Art42 × 39.6 36.2

45 Art45a × × 33.9 30.3

45 Art45b × × 35.3 31.8

48 Art48 × × × 31.6 29.1

57 Art57 × × × 33.2 29.9

60 Art60 × × × × 31.4 28.4

Table 2: % Phone error rates for systems operating on articulatory
data from EMA, EPG and EGG sources as well as acoustic energy
(AcE) for monophone (Mono) and triphone (Tri) systems.

acoustic energy information. Note that the gains in both cases
are not additive, implying redundancy. This is not surprising as
acoustic energy can be used as a good predictor for voicing infor-
mation. However, as is also evident in results here, not all infor-
mation is present. Furthermore, note that the recognition system
based on articulatory information alone outperforms the results us-
ing acoustic features. In addition, information derived from EPG
data yields another 1.5% absolute PER reduction. This result is
likely to be lowered by a dramatic increase in feature vector size
and hence, the number of system parameters estimated on a very
limited training data size. A comparison of results for monophone
and triphone systems show consistent behaviour throughout.

4.4. Parameter reduction techniques

In the experiments reported in [5], principal component analysis
(PCA) is applied to the EMA data. In this work, PCA was found
to degrade performance.

In additional experiments, we use knowledge about the vo-
cal tract anatomy to derive a 9-dimensional representation of the
articulatory data identical to the one used in [7] apart from two dif-
ferences: here the acoustic energy component as used in the pre-
viously described system is added. Further a lip rounding feature
is included, which is computed as the difference between lower lip
and lower incisor positions in the horizontal direction. With this
representation, the data dimensionality was reduced from 48 to 27.
This data set was used to build a new speech recognition system
(Art27). Using this alternative representation, the system perfor-
mance was similar to that obtained with much higher dimensional
feature vectors (Table 3).

System %PER %Voicing %Place %Manner

MFCC39 30.0 13.3 23.6 15.5

Art42 36.2 19.4 24.2 18.8

Art45a 30.3 15.2 21.6 16.6

Art45b 31.8 16.5 21.4 15.6

Art48 29.1 14.5 21.1 15.1

Art57 29.9 15.3 21.6 15.6

Art60 28.4 14.5 20.9 14.7

Art27 28.9 13.7 21.7 15.6

Table 3: % Phone error rate (%PER) for triphone systems. Error
rate based on the clustering of phonemes in 3 phonetic dimensions:
voicing, place and manner of articulation.

4.5. Analysis of errors

In order to identify possible patterns of errors, the confusion matri-
ces were analysed in terms of 3 phonetic feature dimensions: voic-
ing, place and manner of articulation [8]. Phonetic features used
for voicing were voiced and unvoiced. Classes used for place of
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ulation include consonants and vowels. A consonant is classi-
as bilabial, labiodental, dental, alveolar, post-alveolar, palatal,
r or glottal. A vowel is classified by its height: low, mid or
, and by its backness: front, central or back. The features used
anner of articulation were stop, nasal, fricative, vowel, cen-

approximant and lateral approximant. Silence was added as an
tional state in each phonetic dimension.

For each phonetic dimension a deterministic mapping from
emes to phonetic features was applied. Diphthongs were clas-

d in the same category of their first vowel. Rows and columns
e confusion matrices corresponding to phonemes in the same
etic feature category were clustered.

The results in Table 3 (Voicing) show that the level of recogni-
errors in the voicing dimension is relatively low. The acoustic

em has the lowest PER (13.3%). This indicates that, contrary
xpectations, the acoustic system discriminates better between
ed and unvoiced phonemes. Apparently the acoustic represen-
n encodes sufficient voicing information in the acoustic en-
and in the MFCC coefficients. In contrast, for pure articula-
representations the explicit voicing information in one feature
G energy) appears to be sub-optimal.

Table 4 shows an excerpt of the phone confusion matrix for
acoustic system. Note that albeit high, the confusion between
ives that differ by voicing information is not outstanding com-
d to confusion with other plosives. However, the equivalent
ix in the articulatory case (Table 5) shows more confusion er-
between phonemes with same place of articulation (p/b, t/d,
k/g) and a clear distinction between plosives apart from these
s.

p b t d k g Del

p 273 26 16 3 27 19

b 22 240 3 7 3 17

t 11 1 668 42 23 3 89

d 4 2 69 324 2 3 77

k 1 19 1 465 15 32

g 4 4 9 51 101 12

Ins 26 15 108 60 44 11

e 4: Confusion matrix for plosives using acoustic features (raw
ts). System MFCC39.

p b t d k g Del

p 289 57 4 18

b 52 218 1 20

t 3 1 590 85 4 2 126

d 2 1 98 291 2 95

k 1 1 1 464 39 32

g 1 75 94 15

Ins 17 20 87 55 22 11

e 5: Confusion matrix for plosives using articulatory features
counts). System Art57.

In a similar way, the analysis of the results in Table 3 indicates
the best articulatory systems (Art48, Art60) outperform the
stic system in the phonetic dimensions of manner and place

rticulation. This becomes more evident when the percentages
orrect recognition are compared in each phonetic dimension.
percentages in Table 6 show that the articulatory system Art27
erform the acoustic system in correct recognition of conso-
s and vowels. The percentage of correct recognition is greater



than 90% for almost all the phonetic classes. In comparison with
Art57 and Art60, the acoustic system shows better performance for
vowel recognition. A possible explanation for the confusion errors
between vowels is that phonemes or place of articulation features
such as Low or Front that specify vowels, do not have well defined
articulatory correlates [9]. Other confusion errors can be explained
by examining the confusions between different consonants. They
occur partially because their places of articulation are very close
to one another. The only consonant classified as glottal is /h/. The
poor recognition of /h/ may be because of its own nature. The ar-
ticulatory configuration of /h/ can be that of any vowel. /h/ can be
produced with a weakened voicing (between vowels) or no voicing
(at the beginning of an utterance), but with the vocal cords vibrat-
ing. It may be possible that the consequent articulatory variability
of these units was not appropriately modeled.

Place of Art. MFCC39 Art27 Art57 Art60

Bilabial 88.4 97.6 96.2 96.7

Labiodental 80.8 91.9 94.4 94.1

Dental 61.9 88.2 91.8 92.2

Alveolar 95.2 98.3 96.4 96.5

PostAlveolar 80.9 93.0 80.8 78.1

Palatal 60.9 90.8 78.5 82.1

Velar 91.5 98.7 97.8 97.5

Glottal 83.1 83.2 69.8 68.1

Silence 100.0 100.0 100.0 100.0

High-Front 86.3 95.4 89.2 86.3

Mid-Front 82.8 93.7 82.6 81.1

Low-Front 87.5 94.5 84.1 85.6

Mid-Central 83.9 91.9 84.2 82.8

High-Back 82.0 92.3 83.4 84.8

Mid-Back 81.3 89.6 80.6 81.0

Low-Back 79.1 86.8 77.0 76.6

Table 6: Illustration of the patterns of correct recognition result-
ing from the clustering of phonemes per place of articulation in
different confusion matrices.

5. Word recognition experiments
The objective in automatic speech recognition normally is not the
recognition of phonemes but words. Phonemes are considered as
an intermediate step that allow simple and effective discrimination
in a lower dimensional space.

Word recognition experiments where conducted for both the
acoustic front-end and the best articulatory front-ends. Table 7
shows word error rate results for both systems, using a word loop
grammar and a vocabulary of 1817 words. Notably, the differ-
ence in performance between monophone and triphone system has
increased to approximately 5% absolute. It is interesting to note
that the performance differences between acoustic and articulatory
representations are similar to those observed using phoneme error
rate. Due to word constraints, the underlying phoneme error rate
is considerably lower than that obtained in free phone recognition.
Note however, that the reduction in PER for the Art60 system is
12% relative and thus, far more than the WER reduction.

6. Conclusions
Experiments with articulatory data have shown that performance
better than that of associated acoustic systems can be obtained.
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Dim Front-end WER WER PER
Mono Tri Tri

39 MFCC39 33.3 28.0 15.4

27 Art27 - 27.8 15.2

57 Art57 - 27.7 15.4

60 Art60 30.5 26.0 13.5

e 7: % Word error rate (%WER) and % Phone error rate
ER) for monophone (Mono) and triphone (Tri) models using
rd loop grammar as language model.

We have demonstrated that EMA, EPG, EGG and acoustic en-
hold independent information that can be exploited in an effi-

t way. We have proposed a new articulatory representation de-
d from standard signal processing techniques and a knowledge-
d approach for parameter reduction. One of the advantages of
compact representation is that it allows to build simpler speech
gnition models without performance degradation. Experimen-
vidence suggests that better feature extraction techniques and
re reduction schemes, such as factor analysis and linear dis-
inant analysis (or improved versions thereof), will allow for
er improvements. It is clear that long-term dependencies play

mportant role and are not addressed in many works on articu-
y motivated acoustic modelling.
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