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Abstract 
In this paper, a new concept of integrated hypothesis space for 
large vocabulary continuous speech recognition (LVCSR) 
system combination is proposed. Unlike the conventional 
systems combination approaches such as ROVER, the 
hypothesis spaces are directly integrated here without string 
alignment. In this way the timing information for all word 
hypotheses is well preserved and the new framework is more 
flexible on rescoring approaches used. Four rescoring criteria on 
the integrated hypothesis space were further explored and 
experiments on Chinese broadcast news corpus indicated 
improved performance. 
Index Terms: system combination, word graph, integrated 
hypothesis space 

1. Introduction 
Substantial efforts have been made in various areas towards the 
goal of improving the performance of large vocabulary 
continuous speech recognition (LVCSR) technologies. Two 
important areas towards this goal, among many others, are 
rescoring over the word graphs as well as combination of 
multiple systems. 

In the first area of rescoring over the word graphs, a graph 
of limited number of word hypothesis is generated for each 
input utterance, referred to as word graph or hypothesis space, 
and thus more complicated acoustic/linguistic models or search 
algorithms can be applied with low computational requirements 
[1]. The language model rescoring approach with utterance 
level MAP criterion is a typical example in this area. 
Alternatively, in the word level MAP approach the word graphs 
are first reduced to confusion networks, and then the words with 
the highest posterior probabilities in each segment are selected 
as the recognized word sequence [2]. Minimum Bayes-Risk 
(MBR) rescoring, on the other hand, used the expected 
Levenshtein distance as the object cost function [3]. A time 
frame error cost function was also proposed to replace the 
Levenshtein distance in MBR rescoring criterion [4]. Also, an 
optimal Bayes classification (OBC) was proposed recently, in 
which a smoothed Bayesian factor is used as the risk function in 
the classification process, as versus the Levenshtein distance in 
MBR search [5]. 

In a similar but different area, a very useful approach to 
improve the recognition performance is to combine the outputs 
of several different systems to produce a more reliable output. 
ROVER [6] is the most widely used technique in this area. The 
output of each component system here can be 1-Best word 
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uence [6], N-Best word sequence [7], or confusion networks 
8]. With multiple string alignment, a sequence of confusion 
d slots is first constructed. A voting process is then 

formed on each word slot based on word frequencies, 
fidence scores and so on to produce the best word sequence. 
It is certainly highly desirable to integrate the above two 
s of approaches together. However, the multiple system 
bination is usually performed on the output word sequences 

confusion networks, while the rescoring approaches were 
igned for word graphs. Furthermore, the multiple system 
bination very often ignores the endpoints of the word 
othesis, in which some valuable information may be lost 
ing decoding, and the multiple string alignment may thus 
itably distort the original hypothesis spaces, and introduce 
rs during voting. This is why in this paper a new framework 
system combination is proposed, in which the hypothesis 

ces of different systems can be efficiently integrated and 
oring processes can be effectively performed. Reasonable 

formance improvements have been observed in preliminary 
eriments. 
This paper is organized as follows. Section 2 presents the 

posed approach. Section 3 describes the speech corpus used 
he experiments and the baseline systems, and Section 4 gives 
experimental results. Section 5 finally makes the conclusion. 

2. Proposed Approach 
ventionally the system combination is usually performed on 
est lists or confusion networks. But certainly this can be 
omplished one stage earlier to directly integrate the 
othesis space, on which the various rescoring process can be 
ctly applied. This is the way the word graph rescoring and 

tem combination approaches can be integrated as proposed 
e, as illustrated in figure 1. As will be clear below, no string 
nment or confusion network construction preprocess is 
ded in this framework. Thus the implementation is easy and 
cient. This new frame work includes two steps: the 
othesis space integration and rescoring over the integrated 
othesis space. 

Figure 1. The proposed approach of system combination with 
integrated hypothesis space. 

Rescoring 
Recognition 

output 

tem 1

tem N

Individual 
Hypothesis 

Space 

Integrated 
Hypothesis 

Space 

Hypothesis 
Space 

Integration

September 17-21, Pittsburgh, Pennsylvania



2.1. Hypothesis Space Integration 
Suppose there are N systems. For an input utterance, 

NWWW ,,, 21  denote the hypothesis spaces or word graphs 
produced by systems 1 to N. First consider two word graphs 
produced by systems 1 and 2, W1 and W2, and let q1, q2
represent respectively a word arc in W1 and W2, which can be 
expressed as ],;[1 endstarti ttwq  for word wi from time tstart to 
tend produced by system 1 and ],;[2 endstartjwq  for word wj

from time start to end produced by system 2. So we have 
11 qW  and

22 qW , or W1 and W2 are the collections of all q1

and all q2 respectively. Also each word arc has a certain score 
denoted as score(q). Here we define the condition for two word 
arcs from different systems to be equal as: 

.,,iff21 endendstartstartji ttwwqq  (1) 

If two arcs q1 and q2 are equal, we can merge them together into 
q=q1+q2 with the scores combined. 

.if,)( 212121 qqqscoreqscorecombineqqqscore  (2) 

Now we can define the composition of two word graphs as 

,||| 122211212121 WqqWqqqqqqqWW  (3) 

or W1+W2 includes all word arcs in either W1 or W2, with equal 
ones merged. From eq(3), the hypothesis space integration for 
all systems 1 to N can be expressed as 

,
1

21

N

i
iN WWWWW  (4) 

where the integrated hypothesis space W is still a word graph, 
but including all word arcs of the word graph from all 
component systems with equal ones merged. 

2.2. Rescoring on the Integrated Hypothesis Space 

In equations (3)(4), the hypothesis space integration is 
accomplished without any alignment or any loss of timing 
information for word arcs. Also, the combine function for scores 
in equation (2) can be flexibly defined, therefore any reasonable 
score combination operations can be applied. With different 
acoustic/language models and different scales of the different 
systems, rescoring over the integrated hypothesis space across 
different systems is challenging. Here we propose four possible 
approaches for rescoring across different systems as given 
below. We will also show that the concept of discriminative 
decoding can also be applied here. 

2.2.1. Consensus Score (CONS) 

In this approach the score for a word arc q in an original word 
graph, score(q) as defined above, is simply the posterior 
probability of the word arc q, Pi(q), evaluated using the 
forward-backward algorithm within the original word graph for 
the original system i [9][10], and the score combination in 
equation (2) is simply a summation, 

.2121 qscoreqscoreqqscore  (5) 
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, in the integrated hypothesis space, the score of each word 
q, referred to as the associated posterior probability 

ardless of whether it was merged or not: 

qPqPqscoreqre iCONS
 (6) 

 was generated by the system i alone, and 

i
iCONS qPqPqscoreqre  (7) 

 has been merged from several word arcs q in several 
ponent word graphs, where the summation is over those 
ged word arcs and equation (7) is directly from equation (5). 
The decoding procedure is then as usual: 

,maxarg
1

,

21 M

k
k

wqWw

M qscoreqqq
k

 (8) 

re score(q) is as define in equations (6)(7) and w* is the 
d sequence output. With this consensus score, the output 
d sequence w* tends to include most probable word arcs and 
the most probable path with consensus of all component 
tems. 

.2. Expected Phone Accuracy Score (EPA) 

 consensus score mentioned above focuses on the word level 
imization; but sometimes focusing on the phone level may 
helpful too, as evidenced by the well known MPE training 
]. We therefore borrowed the concept in MPE training and 
ine the expected phone accuracy for rescoring purposes as 
ows. Given a hypothesis phone p with its start and end time, 
consider all possible paths w in the word graph W as the 
rence sequence, and p’ is a phone on a reference sequence w 
ch overlaps in time with p. If the proportion of the length of 
hich is overlapped with p is e(p, p’), then 

Ww wp ppe
ppe

OwP
phonesdifferentarepandp'if',1
phonesame  thearepandp'if',21

max|
'

 (9) 

 a word arc q including phones {p1, p2, …, pk}, the phone 
uracy for the word arc q is then 

K

qp
i

i

i

pA
1

 (10) 

 expected phone accuracy (EPA) score of the word arc q is 

,EPA qPqAqAEqscoreqre  (11) 

re P(q) is the merged posterior probability of word arc q in 
ations (6) and (7). The decoding procedure will be as usual 
n equation (8), except score(q) in equation (11) is used. With 
 approach, the search is to find the best path with highest 
ne accuracy. 

.3. Combination of consensus score and expected 
ne accuracy score (CONS+EPA) 

ause the consensus score optimizes on the word level while 
expected phone accuracy score optimizes on the phone level, 
 thus reasonable to combine them together, 



qscoreqscoreqscoreqscore EPACONSEPACONS
 (12) 

where  is a weighting parameter. The same decoding procedure 
of equation (8) equally applies. 

2.2.4. Minimum Time Frame Error (TFE) 

A nice property of the framework proposed here is that the 
integrated hypothesis space is still a word graph. Thus all 
relevant approaches designed for word graphs can be applied. 
Minimum time frame error decoding is a modified version of 
minimum Bayes risk decoding proved very useful [4], in which 
the traditional Levenshtein distance loss function is replaced by 
a frame level loss function. We can thus have  

,
1

'',1
]',';['

startend

ttwq
startend

TFE tt

qPqqoverlaptt
qscoreqscore endstarti (13)

where
endstarti ttwq ,; ,  is a normalization parameter, q’ is any 

other word arc in the word graph which is also for the word wi,
overlap(q,q’) is the number of  frames overlapped by the word 
arcs q and q’, and P(q’) is the posterior probability of q’ which 
can be calculated according to equations (6) and (7). 

Since the time frame error score here is a risk measurement, 
so the decoding procedure is slightly different, i.e., to find the 
path giving the minimum score, 

M

k

k
TFE

wqWw

M qscoreqqqw
k 1,

21* minarg  (14) 

3. Experimental Setup 
Two large vocabulary Mandarin speech recognition systems 
were tested here as system 1 and 2. The primary difference 
between them was in the acoustic feature parameters. System 1 
used the conventional 39-dimensional MFCC feature vectors, 
which consisted of 12 MFCC and log energy, and their first and 
second derivatives. Utterance-based cepstral mean subtraction 
(CMS) was applied to all the training and testing materials. 
System 2 used acoustic features directly derived from the Mel 
Scale Filter Bank. We applied Heteroscedastic Linear 
Discriminant Analysis (HLDA) on the Mel Scale Filter Bank 
outputs to construct 39-dimensional feature vectors as well. 
Maximum Likelihood Linear Transform (MLLT) and Cepstral 
Normalization (CN) were then applied on these feature vectors. 

The speech corpus for training and testing is from the 
Mandarin Broadcast News corpus (MATBN) collected in 
Taiwan [12]. Roughly 25 hours of gender-balanced data for the 
field reporters collected Nov 2001 to Dec 2002 were used for 
training, while another set of 1.5 hour data of field reporters 
collected within 2003 for testing. The acoustic models were 
trained by ML criterion first and then followed by MPE training 
for both systems. 

The lexicon size of this task for both systems 1 and 2 is 72K 
words. The background language model is trained on the 
Chinese News Agency (CNA) 2001 and 2002 text corpus, 
including roughly 170 million characters. Trigram models were 
used. Meanwhile the reference transcriptions of the 25-hour 
training utterances, consisting of about 500K characters, were 
regarded as in-domain text corpus, and used to train an in-
domain language model, to be interpolated with the background 
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uage model to be used as the final language model for the 
eriments. 

4. Experimental Result 
le 1 shows the performance in terms of syllable error rates 
R), character error rates (CER) and word error rates (WER) 
the proposed integrated hypothesis space framework as 
pared to those of the conventional N-Best ROVER with N 

ying from 1 to 20 using NIST SCTK1.3 [13]. Relevant 
ameters were directly tuned on the test corpus to find the 
er bounds of the ROVER performance. 
Comparing ROVER and the proposed approach of 
grated hypothesis space, we found for the WER 
formance over the whole test set, the proposed approach and 
VER are quite similar, able to reduce roughly 1.7% absolute 
d error rate. As for CER, the results for N-Best ROVER was 

uced as N goes higher, yet the lowest CER is still 
ificantly higher than the proposed integrated hypothesis 

ce approaches. A possible reason is that though both 
eworks merged the systems on the word level, in the 

grated hypothesis space approach no word sequence 
nment is performed. This eliminated the possible distortion 
oduced by alignment and kept the output character sequence 
tinuing. Next considering the four rescoring methods 
posed here for the integrated hypothesis space. Comparing 
ONS, (2)EPA, and (3)CONS+EPA first, we found that 

NS is focused on words, thus offered the lowest word error 
; EPA is focused on phones, thus offered the lowest syllable 
r rate. When combining these two scores together, 
NS+EPA achieved the lowest character error rate. If we 
her applied the (4)Minimum Time Frame Error (TFE) 
oding on the integrated hypothesis space, we were able to 
ain further improvements. The overall CER improvement is 
olute 1.53% (19.27% vs. 20.80%) from baseline, and 
olute 0.85% (19.27% vs. 20.12%) from the 20-Best ROVER 
er bound. 

Tested system SER CER WER 
MFCC 15.89 22.19 29.93 seline
HLDA 14.43 20.80 28.53 
1-Best 14.90 20.39 26.92 

10-Best 14.64 20.21 26.76 
VER 

pper 
ound 20-Best 14.49 20.12 26.79 

(1)CONS 13.67 19.62 26.88 
(2)EPA 13.41 19.73 27.70 
(3)CONS+EPA 13.55 19.54 26.97 

grated 
othesis 
pace 

(4)TFE 13.35 19.27 26.71 

Table 1. Syllable, character, and word error rate of different 
system integrating approaches 

Other than the recognition error rates over the whole test set, 
also wish to analyze how the combination frameworks 

formed on the utterance level. We therefore compared WER 
 CER of the utterances of the two baseline systems. Out of 
all 292 testing utterances, the MFCC system gave lower 
d error rates than the HLDA system in 129 utterances; while 
HLDA system outperformed the MFCC system in 84 

rances; and there are 79 utterances for which both systems 
e same word error rate. For character error rates, the MFCC 
tem was better on 84 utterances, the HLDA system 



outperformed on 158 utterances; and both systems have the 
same CER for 50 utterances. 

We can then divide the performance of the system 
combination results into 5 categories: 

1. Better – The performance is better than both 
baselines.

2. As Best – The performance is equal to the best 
baseline.

3. Between – The performance is between the two 
baselines.

4. As Worst – The performance is equal to the worst 
baseline.

5. Worse – The performance is worse than both 
baselines.

Table 2 lists the utterance WER comparison in terms of the 
numbers in the above five categories. We can find that though 
the ROVER approaches always have the largest numbers in the 
“As Best” category out of the five. They also always have 
significant numbers in the categories of “Between”, “As worst” 
and “Worse”. The alignment and voting scheme turned out to 
have less stable performance here. On the other hand, we found 
that the proposed CONS has very large number in the “As Best” 
categories and almost zero in the “Between” and “Worse” 
categories. So it did not actually generate better recognized 
word segments, but selected the best output from the component 
systems. The TFE approach, on the other hand, has the largest 
number in the “Better” category. In other words, both CONS 
and TFE are more stable in performance considered here. This 
is not necessarily true for EPA, probably because it is focused 
on phone accuracy instead of word errors. 

(WER) MFCC better:129, HLDA better:84, Equal:79, Total:292 
ROVER upper bound Proposed Approaches 

1-Best 10-Best 20-Best CONS EPA TFE 
Better 62 68 71 7 53 126 

As Best 104 94 94 209 91 57 
Between 53 58 51 2 44 47 
As worst 48 34 41 74 40 37 

Worse 25 38 35 0 64 25 

Table 2. Utterance WER comparison in terms of the five 
categories. TFE offered the largest in “Better” category, which 

CONS offer the largest number in “As Best” category. 

(CER) MFCC better:84, HLDA better:158, Equal:50, Total:292 
ROVER upper bound Proposed Approaches 

1-Best 10-Best 20-Best CONS EPA TFE 
Better 69 81 80 97 102 145 

As Best 82 70 75 81 78 54 
Between 87 80 80 65 61 63 
As worst 31 28 32 26 24 18 

Worse 23 33 25 23 27 12 

Table 3. Utterance CER comparison in terms of the five 
categories. 

Similar results for the utterance CER is shown in table 3, 
from which similar observations can be made. Note that here 
half of the testing utterances were benefited from the TFE 
approach, in which the number for “As Worst” and “Worse” 
categories are also the smallest. This may be the reason TFE 
achieved the lowest CER. 
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5. Conclusion and Future work 
In this paper, we propose a new approach of integrated 
othesis space for systems combination. Several rescoring 
hods over this space are also explored. Comparing with 
VER, improved recognition performance was obtained and 
roved utterance level performance stability was observed. 
The proposed approach provides a wide flexibility on 
sible rescoring methods. The work to try to apply other 
anced rescoring concepts onto this framework is still under 
gress. 
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