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ABSTRACT 
In this paper, we present new improvements in decoding speed 
and latency for automatic captioning in telehealth. 
Complementary local word confidence scores are used to prune 
uncompetitive search paths. Subspace distribution clustering 
hidden Markov modeling (SDCHMM) is used for fast 
generation of acoustic and local confidence scores, where 
overlap accumulative probability (OAP) is used to measure the 
similarity of Gaussian pdf’s in SDCHMM. We propose to use 
pre-backtrace based on detection of prosodic boundaries 
defined by unfilled pauses, filled pauses, as well as pitch 
contour to decrease latency. Experiments were conducted on a 
telehealth captioning task with vocabulary sizes of 21 K and 46 
K. The proposed methods led to 33% improvement in decoding 
speed without loss of word accuracy, and to 3 folds of decrease 
in maximum latency with about 1.6% loss of word accuracy.  
Index Terms: confidence-based pruning, P-value, decoding 

latency, pre-backtrace, prosodic features 

1. INTRODUCTION
1 Decoding time efficiency has been an important issue in 
automatic speech recognition (ASR) systems. Usually, the time 
efficiency of a decoding engine is measured by the criterion of 
real-time factor. However, for interactive online conversational 
systems, such as telehealth automatic captioning [1], a system 
needs to provide other functions in addition to decoding, like 
speech stream separation, speaking rate estimation, confidence 
annotation, and so on. Since the overall processing time should 
be less than 1.0×real time, in such a system, a real-time 
decoding engine is not fast enough.  

Decoding can be viewed as finding an optimal path in a 
search network. It is intractable to perform an exhaustive 
search through a huge network in large vocabulary continuous 
speech recognition (LVCSR) [2]. To make search feasible, the 
search space needs to be reduced by pruning. Beam pruning is 
probably the most important pruning criteria used in LVCSR 
decoders, which retains only paths with likelihood scores 
deviate from the score of the best partial path hypothesis within 
a beam width [3]. Another common pruning criterion is 
histogram pruning, which limits the number of active paths by 
retaining only a predefined number of best paths. Besides of 
beam and histogram prunings, quickly computing acoustic 
score and accessing language score is another way to speed up 
decoding.  

Dynamic programming based decoding algorithms utilize 
backtracking and determine the best path, i.e., the recognition 
result, until reaching the end of the input. So the latency, i.e., 
the time lapse from a speaker starting to talk till recognition 
result being outputted, is at least the duration of the utterance. 
In telehealth, doctors can talk without a noticeable break for 
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ns of seconds. Such a long utterance contains quite a few 
ntences and sometimes with many filled pauses. Our speech 
eam separation module [1] can detect low-energy un-filled 
uses to break speech inputs into utterances, however, 
cessively long utterances remain in the separation output. 
ch long inputs to a decoder reduce decoding speed and 

crease latency, since as the inputs get longer, more search 
ths will be expanded and more memory will be consumed, 
d the time spent in waiting for recognition outputs will be 
creased. As the consequence, conversations between doctor 
d patient become sluggish. 

Our decoding engine performs large vocabulary continuous 
eech recognition via one-pass time-synchronous Viterbi 
am search with a tree-copy based search organization [12]. 
e current work focuses on improving our decoding engine to 

eet the requirement of online conversation captioning in 
lehealth. We propose three methods to speed up the decoding 
gine and decrease its latency. First, we propose to use 
mplementary local word confidence scores to prune 
promising candidate paths during search, based on local 

ord posterior probability score and word P-value [6]. Second, 
bspace distribution clustering hidden Markov modeling 
DCHMM) [5] is used to speed up the generation of acoustic 
ores and local word confidence scores, where in Gaussian 
nsity clustering for SDCHMM, we propose to use overlap 
cumulative probability (OAP) to measure the similarity of 
aussian pdf’s. Third, in order to decrease latency, we propose 
 use pre-backtrace to output recognition results incrementally 
ior to reaching the end of input by using as prosodic cues 
filled pauses, filled pauses, as well as pitch contour for pre-
cktrace. It is worth noting that unlike read speech problems 
alt with in [4], where low energy pauses were used as cues 
r pre-backtrace, in conversational speech, energy cue alone is 
sufficient and therefore more prosodic cues are needed.  

The rest of the paper is organized as the following. Section 
describes how to use the local word confidence scores of P-
lue and local word posterior probability (LWPP) as a path 
uning criteria. Section 3 describes the use of OAP to cluster  
aussian pdf’s for SDCHMM to speed up the generation of 
oustic score and local word confidence score. In section 4, 
e method of performing pre-backtrace for long inputs based 
 prosodic cues is described. In section 5 we present 
perimental results. We conclude the work in section 6.  

2. CONFIDENCE-BASED PRUNING 
nfidence-based pruning was proposed in [7] to guide the 

arch for most promising paths in addition to beam and 
stogram prunings. In this technique, confidence scores play 
e role of an online filter that is applied to the word level 
rtial hypotheses to aid the decision of whether to consider 
em for further path expansions or to discard them from the 
arch space. In [7], only the feature of LWPP was used. Here 
e use two complementary confidence scores. One is word 
vel P-value, another one is LWPP.  
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2.1 P-value
P-value was first used in confidence measure in [6]. For a one-
dimensional Gaussian distribution N(μ, 2) with a known 2

and an unknown μ, one may test if μ equals μ0 or not. Given an 
observation x, P-value is defined as Pv(x) = Prob(| X- μ | > | x-μ|
|μ=μ0)which is the shaded area in Fig. 1. The larger Pv(x) is, the 
higher confidence we have that μ equals μ0.

Fig. 1 P-value for a Gaussian distribution (shaded area) 
For classification, we need to test if an observation x belongs to 
some class C. If the class-conditional distribution is a Gaussian 
distribution N(μ0, 2), we can use Pv(x) as a confidence feature.  

In speech recognition, a tied state of context-dependent 
triphone HMMs is modeled by a multivariate Gaussian mixture 
density (GMD), and diagonal co-variance matrix is often used 
for the component Gaussian densities. We therefore define the 
P-value Pv,i(x) for the ith n-dimensional Gaussian density of a 
GMD as the product of the P-values of individual dimensions. 
The P-value of an I-sized n-dimensional Gaussian mixture 
distribution is then defined as 

))((max)( , xPwxP iviiv
or     

Ii
iviv xPwxP

...1
, )()( ,

where wi is the ith mixture weight. Our empirical evaluation 
showed that there was insignificant difference between these 
two definitions, and in the current work the latter definition is 
used. For a word w in a search path, denote xt, t = 1,2,…,T as 
the corresponding acoustic observation sequence and 

ti
M , t = 

1,2,…,T as the corresponding model sequence. We then define 
the log P-value for the word w as 

T

t
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2.2 LWPP 
The feature LWPP was proposed by Fu et al [8]. To define 
LWPP, the posterior probability of the state si conditioned on 
the observation x is defined as 
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where D is the set of states survived after pruning. By 
assuming that the prior probabilities of all states are uniform, 
formula (2) is simplified as 
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Assuming for the word w the state sequence and the 
observation sequence to be 

1i
s ,…, 

Ti
s and x1, …xT, the LWPP 

of w is defined as:  
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lthough Pv(w) and LWPP(w) both provide confidence 
formation for the word w, they are different. P-value captures 
formation of distribution spreadness more effectively, while 

PP(w) catches the difference of acoustic scores among the 
th candidates. A competitive path should have both large 

)(wv  and LWPP(w).
In the search process, at every time frame t, each word w

at reaches its final state will be evaluated by confidence 
ores of Pv(w) and LWPP(w). These two values reflect how 
ell the hypothesized word can account for the acoustic 
idence. The better the acoustic evidence is supported by a 
pothesized word, the higher the confidence that the word is 
 fact correct. If )(wPv  or LWPP(w) is smaller than their 
edefined thresholds, the corresponding path will be pruned.  

3. SDCHMM 
CHMM was first introduced by Bocchieri and Mak [5], 

ith the aim of building compact acoustic models.  Since in 
CSR, the number of physical models is very large, 

mputing acoustic scores and P-values consume a lot of time, 
pecially P-value, where the time needed to compute a P-
lue is several times more than that for computing an acoustic 
ore. Although we use table-lookup to speed up the 
mputation of P-values, prior to lookup we need to normalize 
e observation x for each physical model to have zero mean 
d unit standard deviation, which is still a heavy burden due 
 the large number of physical models. If SDCHMM is used, 
en the Gaussian density scores of all continuous density 
dden Markov models (CDHMMs) can be approximated by 
rtain combinations of a small number of subspace 
stribution prototypes. In the decoding process, all these 
bspace Gaussian log likelihoods and log P-values can be 
ecomputed once for each dimension at the beginning of each 
me, and their values are stored in lookup tables. Then for 
ch Multivariate Gaussian in a physical model, the log 
elihoods and log P-values can be computed as the 
mmation of precomputed values in different dimensions 
gether with the log mixture weight. So SDCHMM is 
mputationally efficient.  

To convert CDHMM to SDCHMM, a clustering of 
aussian densities in each feature dimension is made and 
erefore a proper measure of similarities of the pdf’s is needed. 
e classification-based Bhattacharyya distance (CBB) was 
ed in [5]. Li et al proposed Kullback-Leibler divergence 
LD) for SDCHMM [9]. For Gaussian distributions, it was 
und that KLD overstates the difference between Gaussian 
nsities when they have very different variances [11].  

OAP was first proposed in [11], where it was used for 
ame Discrimination (FD) training. Here we use OAP [11] as 
e similarity measure for clustering a Gaussian pdf f to a 
aussian prototype g, which is defined as:   

dxgfgfS ),min(),(  (5) 

e value S(f, g) is between 0 and 1. If f and g are the same, 
en S(f, g) equals 1. For two Gaussian pdfs, S(·,·) equals one 
 the shaded areas in Fig. 2.  

     Fig. 2 Definition of OAP for two Gaussian pdfs. 



The optimal prototype, g(μp, p
2), of a cluster of N Gaussian 

distributions, f(μi, i
2), i =1…N,  is obtained by the following 

formulas: 
N

i
ip N 1

1  (6) 

N

i
piip N 1

222 })({1  (7) 

To initialize the iterative k-means clustering procedure for 
converting CDHMMs to SDCHMMs with K subspace 
Gaussian prototypes per dimension, we first split all the 
Gaussians into K supspaces, based on the mean values of the 
Gaussians. In each dimension, we order all the M Gaussians to 
be clustered with the increasing order of si ' . We assign the 
first M/K Gaussians to cluster 1, the second M/K Gaussians to 
cluster 2, and so on, and compute the Gaussian prototype of 
each cluster with formulas (6) and (7). Subsequently, the 
algorithm iterates between cluster assignment and prototype 
update. In cluster assignment, each Gaussian is assigned to the 
cluster producing maximal S(·,·). In prototype update, the 
formulas (6) and (7) are used. Usually after a few iterations the 
Gaussian prototypes will converge.  

4. PRE-BACKTRACE DECODING  
It is widely acknowledged that prosodic features play an 
important role in the definition and hence the detection of 
syntactic boundaries. Since most phonological rules are 
constrained to operate within a phrase, it is reasonable to 
consider pre-backtrace at syntactic boundaries which are often 
associated with prosodic boundaries.
      Unfilled pause (or pause) is a well recognized feature of 
prosodic boundary. In spontaneous speech, on the other hand, 
filled-pause, such as AH, UM, is also a promising feature. 
Many filled pauses last for sufficient durations and therefore 
they serve as potentially good places for pre-backtrace. F0
contour represents intonation. Dips in F0 contours often 
coincide with prosodic boundaries and therefore they can be 
used in addition to energy for detection of syntactic boundaries. 
In [10], the F0 contour is segmented at dips (minima) in the 
energy contour of the same speech utterance, and rules are 
applied to generate candidate syntactic boundaries at dips in 
the F0 contour. We detect dips in F0 contour by following the 
rules of [10]. We use autocorrelation of residues of linear 
prediction coding (order 16) to produce F0. For each speech 
segment marked by a pair of dips in the energy contour, we fit 
the pitch contour by a recursive line with the method of least 
square error. If the error averaged over the segment exceeds a 
threshold, the segment is divided into two parts at the point 
where the maximum error occurs and a recursive line is fitted 
again for each part. The process iterates until we find a 
recursive line for each segment. All dips in F0 contour obtained 
by this procedure are treated as potential prosodic boundaries.   

With the aim of reducing latency in our decoding engine, 
we detect syntactic boundaries based on detections of short 
unfilled pauses, filled pauses, and dips in F0 contour during 
one-pass speech decoding and use the cues to perform pre-
backtrace. In acoustic modeling, one HMM model was trained 
for short pause, and nine HMM models were trained for nine 
patterns of filled pauses. In decoding, if short pause states rank 
as the best hypothesis consecutively with a duration exceeding 
a threshold, then the boundary is accepted; similarly, if the last 
state of a filled pause HMM ranks as the best hypothesis 
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nsecutively for several time frames, then the boundary is 
cepted; finally, if a prosodic boundary is detected at some 
int due to a dip in F0 contour, and the last state of some word 
nks as the best hypothesis for several consecutive frames, 
en the boundary is also accepted. Once a prosodic boundary 
accepted, the decoder starts backtracking, finds the best 

rtial path and outputs it. Decoding then continues by using 
e fixed word history that includes the last several words on 
e best partial path just produced.  

5. EXPERIMENTAL RESULTS 
periments were conducted on the telehealth captioning 
stem, using five doctors’ datasets, Dr. 1 through Dr. 5. The 
provements on speed and latency are made on the decoding 
gine TigerEngine 1.1 [12]. The captioning task has a 
cabulary size of 46,489, with 3.07% of vocabulary words 
ing medical terms. Five speaker dependent (SD) acoustic 
odels were trained with one for each doctor. Similarly, five 
ixture trigram language models were trained for individual 
ctors. Test set perplexities for the five doctors Dr. 1 through 

r. 5 were 115.51, 84.49, 75.63, 116.84, and 107.12, 
spectively. For details of the captioning system and data, 
ease refer to [1]. The task vocabulary size was 46k except for 
e case of Table 2, where 21k was used for faster decoding 
eed.  

Table 1 shows the recognition results for SDCHMM, using 
e discussed three methods to measure similarities of pdf’s.  

Table 1. Comparison of word accuracy  
between SDCHMM and CDHMM 

Word Accuracy 
Subspace model Full-space 

model CBB KLD OAP 
Dr. 1 80.28% 80.41% 80.50% 81.14%
Dr. 2 74.08% 73.90% 73.76% 74.05%
Dr. 3 71.82% 73.98% 73.55% 74.41%
Dr. 4 79.32% 79.66% 79.13% 79.54%
Dr. 5 82.12% 81.42% 81.85% 82.17%
Average 77.52% 77.87% 77.76% 78.26%

om Table 1 we see that OAP obtained better results than 
B and KLD, except for Dr. 4’s dataset, where CBB got the 

st result. We also observe that the average performance of 
ch subspace model is better than the original full-space 
odel, which is mainly due to our insufficient training data in 
ining a large set of CDHMMs. Subspace modeling made up 
r the deficiency of training data by reducing the large set of 
rameters of CDHMMs to a smaller set of parameters of 
CHMM. 
In order to measure the effects of Confidence-based 

uning (CBP) and SDCHMM, we summarize the recognition 
sults and speeds on Dr. 1’s dataset, before and after using 
nfidence-based pruning and SDCHMM. Here SDCHMM 

ed OAP, and the baseline used CDHMMs. The thresholds 
r confidence-based pruning were empirically set to be -80 for 

Tw /)( and -9 for LWPP(w)/T, with T the duration of word w.

Table 2. Performance of Confidence-based pruning  
and SDCHMM 

Word 
accuracy 

Speed 
(RT factor)

aseline 79.45% 1.2 
BP(P-value + LWPP) 79.35% 1.4 



SDCHMM 80.29% 1.0 
P-value only 80.25% 0.9 
LWPP only 80.27% 0.9 

CBP+
SDCHMM 

Both 80.25% 0.8 
From Table 2 we observe that by using Confidence-based 
pruning and SDCHMM, the speed of decoding engine is 
improved from 1.2 real-time to 0.8 real-time. But when only 
confidence-based pruning was used, the speed was even slower 
than baseline, since computing P-value took up more time than 
that saved by pruning of uncompetitive paths. Furthermore, in 
confidence-based pruning, when only P-value or LWPP was 
used, the speeds were both about 0.9 real-time. Therefore it is 
meaningful to use both as the confidence scores for path 
pruning.

Table 3 compares recognition results obtained by using the 
proposed pre-backtrace method and the baseline, where the 
latter used OAP based SDCHMM. The pre-backtrace duration 
thresholds based on unfilled pause, pitch, and filled pauses 
were empirically set to be 200ms, 100ms, and 50 ms, 
respectively. 

Table 3. Recognition performance of baseline  
and pre-backtrace  

Word Accuracy 
Baseline Pre-backtrace 

Dr. 1 81.14% 78.61% 
Dr. 2 74.05% 73.32% 
Dr. 3 74.41% 72.29% 
Dr. 4 79.54% 79.32% 
Dr. 5 82.17% 79.76% 
Average 78.26% 76.66% 

We observe that pre-backtrace decreased word accuracy 
somewhat, since it is possible to prune away the best path 
prematurely. Fig. 3 shows the distributions of latencies without 
and with pre-backtrace. From Fig. 3 we see that pre-backtrace 
decreased latency greatly. Without pre-backtrace, the maximal 
latencies ranged from 8.4 seconds to 38.6 seconds, depending 
on the speaking style of different doctors, and the average 
latencies were from 2.4 seconds to 5.7 seconds. After pre-
backtrace, the average latencies were from 2.1 seconds to 4.5 
seconds, and the maximal latency dropped to 12.9 seconds.  

Fig. 3 Distributions of latencies  

In order to verify the effect of using F0 contour in pre-
backtrace, we provide the results of using only unfilled pauses 
or filled pauses to detect boundaries for pre-backtrace. This test 
was done on Dr. 1’s dataset. Table 4 summarizes the results.  

Table 4. Comparison of using unfilled pause , filled pause and 
F0 contour in detection of prosodic boundary 

Latency Word  
Accuracy Average Max.

200 ms pause 79.24% 3.5s 9.6s
150 ms pause 76.23% 2.7s 7.5s
Filled pause 80.55% 3.8s 9.2s
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00 ms pause + filled 
ause + F0 contour 

78.61% 3.1s 7.7s

aseline 81.14% 4.0s 11.0s

e observe that unfilled pause feature is effective on latency 
t introduces a large loss on word accuracy, filled pause 
ature introduces less errors but has less effect on latency, and 
e best tradeoff in accuracy and latency appears to be 
hieved with using all three prosodic features.  

6. CONCLUSION 
 this paper we propose three new methods to improve the 
eed and latency performance of a speech decoding engine for 
lehealth captioning. Complementary word confidence scores 
ere used to prune uncompetitive paths. SDCHMM was used 
r fast generations of acoustic and local confidence scores 
ith an improved clustering similarity measure. Prosodic 
atures of unfilled pause, filled pause, and pitch contour were 
ed to detect syntactic boundaries to decrease latency in 
cognition outputs of an online LVCSR system. By 
mbining these three methods, our decoding engine achieved 
ster decoding speed and lower latency. 
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