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ABSTRACT

In our previous works, a maximum likelihood training approach
was developed based on the concept of stochastic vector mapping
(SVM) that performs a frame-dependent bias removal to compen-
sate for environmental variabilities in both training and recognition
stages. Its effectiveness was confirmed by evaluation experiments
on Aurora2 and Aurora3 databases. In this paper, we present an ex-
tended ML formulation to entertain some new SVM functions that
are piecewise linear transformations and are more flexible than the
frame-dependent bias removal. Evaluation results on Finnish Au-
rora3 database show that in comparison with the performance of
a baseline system based on ML-trained CDHMMs without feature
compensation, the previous and the new SVM-based feature com-
pensation approaches achieve a relative word error rate reduction
of 15.7% and 26.1% respectively for well-matched condition.

Index Terms: robust speech recognition, feature compensation,
maximum likelihood, hidden Markov model.

1. INTRODUCTION

Using feature transformation in training and/or recognition stages
to compensate for possible “distortions” caused by factors irrel-
evant for phonetic classification has been studied in robust auto-
matic speech recognition (ASR) area for many years. In the past
several years, we’ve also been working on this research topic based
on the concept of stochastic vector mapping (SVM) that performs
a frame-dependent bias removal to compensate for “environmen-
tal” variabilities in both training and recognition stages. In the
following, our past attempts are summarized first.

Let’s assume that a speech utterance corrupted by some “dis-
tortions” has been transformed into a sequence of feature vectors.
Given a set of training data Y = {Yi}I

i=1, where Yi is a sequence
of feature vectors of original speech, suppose that they can be par-
titioned into E “environment” classes, and the D-dimensional fea-
ture vector y under an environment class e follows the distribu-
tion of a mixture of Gaussians, p(y|e) =

PK
k=1 p(k|e)p(y|k, e)

=
PK

k=1 p(k|e)N (y; ξ
(e)
k , R

(e)
k ) , where N (·; ξ, R) is a normal

distribution with mean vector ξ and diagonal covariance matrix R.
Readers are referred to [14] for the approach we used for the auto-
matic clustering of environment conditions from training data Y ,
the labelling of an utterance Y to a specific environment condi-
tion, and the estimation of the above model parameters. Given
the set of Gaussian mixture models (GMM) {p(y|e)}, the task
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rame-dependent SVM-based compensation is to estimate the
pensated feature vector x̂ from the original feature vector y by
ying the environment-dependent transformation F(y; Θ(ey)),
re Θ(ey) represents the trainable parameters of the transforma-
and ey denotes the corresponding environment class to which
longs. However, for the simplicity of notation, we will here-
ter simply use e to denote the environment class to which y
ngs, if no confusion will be caused according to the context.
Previously, we have studied two SVM functions [12, 13, 15].
first one is borrowed from [3] and listed as follows:

x̂ � F1(y;Θ(e)) = y +
KX

k=1

p(k|y, e)b
(e)
k , (1)

re

p(k|y, e) =
p(k|e)p(y|k, e)PK
j=1 p(j|e)p(y|j, e) , (2)

Θ(e) = {b(e)
k }K

k=1. The second SVM function is borrowed
[2] and listed as follows:

x̂ � F2(y;Θ(e)) = y + b
(e)
k , (3)

re Θ(e) = {b(e)
k }K

k=1, and for the environment class e which y
ngs to,

k = arg max
k′=1,...,K

p(k′|y, e) . (4)

In our first attempt as reported in [12], an environment com-
ated minimum classification error (MCE) training approach
proposed for the joint design of SVM function parameters and
M parameters of a recognizer. Our approach does not rely on
availability of the stereo recordings of both clean and noisy
ch for the estimation of SVM function parameters, while the
ICE algorithm proposed in [2, 3] requires stereo data. To ini-
ze MCE training, an environment compensated maximum like-
od (ML) training approach was also developed but described

briefly due to the lack of space in [13]. Its detailed formula-
was presented later in [15].
In recognition, given an unknown utterance Y , the most simi-
raining environment class e is identified first (e.g. [14]). Then,
orresponding GMM and the mapping function are used to de-
a compensated version of X̂ from Y . For the convenience of
tion, we also use hereinafter F(Y ; Θ(e)) to denote the com-
ated version of the utterance Y by transforming individual
re vector yt as defined in previous SVM functions. After
re compensation, X̂ is finally recognized by an HMM-based

gnizer trained as described in [12] or [15].
There are several interesting works from other research groups
are related to our efforts. As discussed in [4], although the
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fMPE approach reported in [10] was derived with a different mo-
tivation, interestingly, its feature transformation is essentially the
same as what was used in [12]. The main difference lies in the
objective function used (MPE (minimum phone error) in [10] vs
MCE in [12]) and the corresponding optimization procedures for
training transformation and HMM parameters. Another work is
the MMI-SPLICE approach reported in [5] in which the objective
function for parameter learning is maximum mutual information
(MMI). As a remark, a better name for the above approach may be
“MMI-PLICE” because no stereo data is required. A third work is
reported in [11] in which piecewise linear transformations, that are
more flexible than the frame-dependent bias removal in [12, 10, 5],
are used for ML unsupervised online feature adaptation based on
seed HMMs trained without feature compensation. Most recently,
an effort was also reported in [6] to extend “MMI-PLICE” for en-
tertaining piecewise linear transformations, but only experimental
results for MMI training of transformations are reported. Encour-
aged by the promising results reported in [11], we have extended
our environment compensated ML training approach [15] to en-
tertain some more flexible piecewise linear transformations. The
main purpose of this paper is to report our study on this topic.

The rest of the paper is organized as follows. In Section 2, we
describe two new SVM functions and the corresponding ML train-
ing procedures. In Section 3, we report the experimental results,
and finally we conclude the paper in Section 4.

2. WHAT’S NEW

2.1. New Stochastic Vector Mapping Functions

In this paper, two new SVM functions are studied. The first one is
borrowed from [8] and listed as follows:

x̂ � F3(y;Θ(e)) = A(e)y + b(e) , (5)

where A(e) is a nonsingular D×D matrix, b(e) is a D-dimensional
vector, and Θ(e) = {A(e), b(e)}.

The second SVM function we used is defined as follows:

x̂ � F4(y;Θ(e)) = A(e)y +
KX

k=1

p(k|y, e)b
(e)
k , (6)

where Θ(e) = {A(e); b
(e)
k , k = 1, . . . , K}. Similar to what we

did in [15], we use F4(y;Θ(e)) in the recognition stage only. In
the training stage, the following SVM function is used instead to
simplify the relevant derivation and to reduce the computational
complexity:

x̂ � F5(y;Θ(e)) = A(e)y + b
(e)
k , (7)

where k is calculated by using Eq. (4).
Let’s assume that each basic speech unit in our speech recog-

nizer is modelled by a Gaussian mixture continuous density HMM
(CDHMM), whose parameters are denoted as λ = {πs, ass′ , csm,
μsm, Σsm; s, s′ = 1, · · · , S; m = 1, · · · , M}, where S is the
number of states, M is the number of Gaussian components for
each state, {πs} is the initial state distribution, ass′ ’s are state tran-
sition probabilities, csm’s are Gaussian mixture weights, μsm =
[μsm1, · · · , μsmD ]Tr is a D-dimensional mean vector, and Σsm =
diag{σ2

sm1, · · · , σ2
smD} is a diagonal covariance matrix. Our en-

vironment compensated ML training approach is to maximize, by
adjusting SVM function parameters Θ = {Θ(e), e = 1, · · · , E}
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CDHMM parameters Λ = {λ}, the following likelihood func-

L(Θ,Λ) =
IY

i=1

p(F(Yi; Θ)|Λ) (8)

ed on the training set Y . In the following two subsections, we
ribe in detail two ML training procedures for SVM functions
y; Θ(e)) and F4(y; Θ(e)) respectively.

Joint ML Training of the Parameters of SVM Function
y; Θ(e)) and CDHMMs

n SVM function F3(y;Θ(e)) is used, our joint ML training
edure is as follows:

1: First, a set of CDHMMs, Λ, are trained from multi-condition
training data Y and used as the initial values of HMM pa-
rameters. The initial values of transformation matrices A(e)

are set to be identity matrices and the initial values of bias
vectors b(e) are set to be zero vectors.

2: Second, given the HMM parameters Λ, for each environ-
ment class e, we estimate the environment dependent map-
ping function parameters Θ̄(e) by using the Constrained
MLLR (CMLLR) approach described in [8] to increase the
likelihood function L(Θ,Λ). One EM iteration is performed
in our experiments.

3: Third, we transform each training utterance using the map-
ping function in Eq. (5) with parameters Θ̄. Using the en-
vironment compensated utterances, several (5 in our experi-
ments) EM iterations are performed to re-estimate CDHMM
parameters Λ̄, with an increase of the likelihood function
L(Θ̄, Λ).

4: Repeat Step 2 and Step 3 several times if necessary. In
our experiments, we skipped this step.

After the above steps, we obtain the Θ̄ and Λ̄ as an ML esti-
on of mapping function parameters and CDHMM parameters,
h can be used in the recognition stage for feature compensa-
as shown in Eq. (5).

Joint ML Training of the Parameters of SVM Function
y; Θ(e)) and CDHMMs

n SVM function F4(y;Θ(e)) is used, our joint ML training
edure is as follows:

1: Initialization

step is the same as Step 1 described in the previous sub-
ion, except that the initial values of the bias vectors b

(e)
k =

, ..., b
(e)
kD]Tr are set to be zero vectors.

2: Estimating SVM Function Parameters Θ

n the HMM parameters Λ, for each environment class e, we
ate the environment dependent mapping function parameters

) to increase the likelihood function L(Θ, Λ). Let’s consider a
icular environment class e and use Ie to denote the subset of
ubscript of training utterance Yi which belongs to the environ-
t class e. By using the general EM algorithm and the specific



SVM function in Eq. (7) for feature compensation, the auxiliary
Q-function for Θ(e) becomes

Qe =
X
i∈Ie

X
t

X
s

X
m

ζit(s, m) (9)

log
h
N (A(e)yit + b(e)

qt
; μsm, Σsm)|det(A(e))|

i
.

In the above equation, ζit(s, m) is the occupation probability of
Gaussian component m in state s, at time t of the current compen-
sated observation. It can be calculated with a Forward-Backward
procedure using the training utterance X̂i (compensated from Yi

with the current Θ) against the current HMM parameters Λ in the
E-step. yit is the t-th frame feature vector of the utterance Yi. For
simplicity, the following two-stage iterative procedure is used to
increase the above Q-function: firstly, update A(e) while keeping
b
(e)
k fixed; secondly, update b

(e)
k by using the feature vectors trans-

formed by A(e) only.

Step 2-1: Estimating A(e)

The derivation of the updating formula for A(e) is similar to that
in CMLLR [8]. By differentiating the Q-function with respect to
the r-th row of A(e) (hereinafter denoted as A

(e)
r ) and equating to

zero, the following updating formula can be derived:

A(e)
r = α(e)

r p(e)
r G(e)−1

r + v(e)
r G(e)−1

r , (10)

where p
(e)
r is the cofactor row vector [c

(e)
r1 . . . c

(e)
rD] with c

(e)
rl =

cof(A
(e)
rl ), and

G(e)
r =

X
i∈Ie

X
t

X
s

X
m

1

σ2
smr

ζit(s,m)yity
Tr
it , (11)

v(e)
r =

X
i∈Ie

X
t

X
s

X
m

1

σ2
smr

ζit(s,m)(μsmr − b(e)
qtr)y

Tr
it , (12)

α(e)
r = − ε2

2ε1
±

p
ε2
2 + 4β(e)ε1

2ε1
, (13)

β(e) =
X
i∈Ie

X
t

X
s

X
m

ζit(s,m) , (14)

ε1 = p(e)
r G(e)−1

r p(e)Tr
r , (15)

ε2 = p(e)
r G(e)−1

r v(e)Tr
r . (16)

The value of α
(e)
r is selected that maximizes

Qe = β(e) log |α(e)
r ε1 + ε2| − 1

2
α(e)2

r ε1 . (17)

Step 2-2: Estimating b
(e)
k

After the above step, we transform each training feature vector y
to x̃ by using the updated {A(e)} as follows:

x̃ = A(e)y . (18)

Then, as described in detail in [15], {b(e)k } can be estimated by
using the compensated feature vectors {x̃} as follows:

b
(e)
kd =

P
i∈Ie

P
t,s,m 1[k, i, t]ζit(s, m)(μsmd − x̃itd)/σ2

smdP
i∈Ie

P
t,s,m 1[k, i, t]ζit(s, m)/σ2

smd

,

(19)
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re

1[k, i, t] =

8<
:

1 if k = arg maxk′ p(k′|yit, e)

0 otherwise
. (20)

e above equation, ζit(s, m) is the occupation probability of
ssian component m in state s, at time t of the current compen-
d observation. It can be calculated with a Forward-Backward
edure using the training utterance X̂i against the current HMM
meters Λ. Each feature vector in X̂i is a result of the following
re compensation:

x̂ = x̃ + b
(e)
k , (21)

re k is calculated by using Eq. (4).
The above iteration of Step 2-1 and Step 2-2 can be repeated
times if necessary. In our experiments, only one iteration is
ormed.

3: Estimating CDHMM Parameters Λ

r the above step, we further transform each training feature
or x̃ derived in Eq. (18) to x̂ as follows:

x̂ = x̃ +
KX

k=1

p(k|y, e)b
(e)
k . (22)

g the above environment compensated training feature vectors
, Nh EM iterations are performed to re-estimate CDHMM pa-
eters Λ̄, with an increase of the likelihood function L(Θ̄, Λ).

4: Repeat Step 2 and Step 3 Ne times.

According to our past experience as reported in [15], we also
the setting of Nb = 1, Nh = 5, Ne = 1 in this study. In
gnition stage, the feature vectors of an unknown utterance are
pensated by using Eq. (6).

3. EXPERIMENTS AND RESULTS

use Aurora3 database to verify the effectiveness of our algo-
s. Aurora3 contains utterances of connected digits in four
pean languages, namely Finnish, Spanish, German and Dan-
All utterances were recorded by using both close-talking (CT)
hands-free (HF) microphones in cars under several driving
itions to reflect some realistic scenarios for typical in-vehicle
applications. There are roughly three conditions: quiet, low

e, and high noise. For each language, the database is divided
three subsets according to matching degree between training
and test data: Well-Matched condition (WM), Middle Mis-
hed condition (MM) and High Mismatched condition (HM).
e following discussions, only the results on the WM subset of
innish Database [1] are used, where both training and testing
include utterances recorded by both CT and HF microphones
all noise conditions.

In our experiments, the ETSI Advanced Front-End (AFE) as
ribed in [7] is used for feature extraction from a speech ut-
ce. A feature vector sequence is extracted from the input
ch utterance via a sequence of processing modules that include
e reduction, waveform processing, cepstrum calculation, blind
lization, and “server feature processing”. Each frame of fea-
vector has 39 features that consists of 12 MFCCs (C1 to C12),



Table 1. A comparison of word error rates (WERs in %) of differ-
ent approaches and the relative word error rate reduction (in %) of
several SVM-based approaches versus a baseline system.

Approaches WER (%) Relative Improvement (%)
Baseline 3.95 -
SVM1 3.33 15.7
SVM3 3.08 22.0
SVM4 2.92 26.1

a combined log energy and C0 term, and their first and second or-
der derivatives. Although all the feature vectors are computed from
a given speech utterance, the feature vectors that are sent to the
speech recognizer and the training module are those correspond-
ing to speech frames, as detected by a VAD module described in
Annex A of [7].

Each digit is modeled as a whole word left-to-right CDHMM
with 16 emitting states, 3 Gaussian mixture components with di-
agonal covariance matrices per state. Besides, two pause models,
“sil” and “sp”, are created to model the silence before/after the
digit string and the short pause between any two digits, respec-
tively. The “sil” model is a 3-emitting state CDHMM with a flexi-
ble transition structure as that of HMM described in [9]. Each state
is modeled by a mixture of 6 Gaussian components with diagonal
covariance matrices. The “sp” model consists of 2 dummy states
and a single emitting state which is tied with the middle state of
“sil”.

During recognition, an utterance can be modeled by any se-
quence of digits with the possibility of a “sil” model at the be-
ginning and at the end and a “sp” model between any two digits.
All of the recognition experiments are performed with the search
engine of HTK3.0 toolkit.

A set of baseline CDHMMs are trained first by running the
training scripts published in Aurora3 CDs, i.e., the standard ML
training implemented in HTK. The Word Error Rate (WER) of
this CDHMM-based baseline system is 3.95%.

As in [15], in SVM-based experiments, all the training data
are clustered into 8 different environment classes (i.e. E = 8),
of which each is modeled by a GMM consisting of 32 Gaussian
components (i.e. K = 32) [14]. As reported in [15], an SVM-
based approach using the SVM function in Eq. (1), called SVM1
in [15], achieves a WER of 3.33% under the same experimental
setup as described above.

In this study, the following sets of new SVM-based experi-
ments are conducted:

SVM3: the SVM function F3(y; Θ(e)) in Eq. (5) is used in recog-
nition for feature compensation and the training procedure
in Section 2.2 is used for training model parameters;

SVM4: the SVM function F4(y; Θ(e)) in Eq. (6) is used in recog-
nition for feature compensation and the training procedure
in Section 2.3 is used for training model parameters.

SVM3 and SVM4 approaches achieve WERs of 3.08% and 2.92%
respectively. Table 1 compares word error rates of the above dif-
ferent approaches. So far, SVM4 approach achieves the best per-
formance.

4. CONCLUSIONS AND DISCUSSIONS

In this paper, we have presented an ML training approach to ir-
relevant variability compensation based on piecewise linear trans-
formations. In comparison with our previous approaches based on
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e-dependent bias removal, the new approach achieves a much
r performance because more flexible feature transformations

r a better opportunity to compensate for some more compli-
d distortions.
Although we have demonstrated the usefulness of the SVM-
d approaches for several robust ASR applications where di-
ified yet representative training data are available, the perfor-
ce improvement of SVM-based approaches is less significant
e case of that there is a severe mismatch between training
testing conditions. In order to improve the performance fur-

, one possibility is to perform unsupervised online adaptation
VM function parameters. We have conducted a study along
direction and will report its results elsewhere.
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