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ABSTRACT

Speaker adaptation is critical for modern speech recognition sys-

tems. Due to the computational and multi-channel model sharing

considerations, the use of model adaptation techniques is limited

in telephony speech recognition systems. On the other hand, fea-

ture space adaptation methods such as feature space maximum like-

lihood linear regression (fMLLR) are efficient approaches suitable

for telephony systems. In this work, we first describe techniques

for efficient implementation of online fMLLR adaptation. Then fea-

ture space maximum a posteriori linear regression (fMAPLR) is

proposed to incorporate prior knowledge for the feature transform

estimation and improve the robustness of the conventional fMLLR

approach. Experiments on telephony data indicate that fMAPLR is

significantly more robust than fMLLR, and outperforms fMLLR es-

pecially when the adaptation data is very limited.

Index Terms: Speaker adaptation, telephony, speech recognition.

1. INTRODUCTION

Speaker adaptation is essential for modern speech recognition

systems, especially when there are significant mismatches be-

tween the training and decoding conditions. Many adapta-

tion methods have been proposed to compensate for channel

and speaker variations. Maximum likelihood linear regres-

sion (MLLR) [1] and maximum a posteriori (MAP) [2] based

adaptation are the most popular approaches. MAP based adap-

tation incorporates prior knowledge about the distribution of

the model parameters to help robust adaptation of model pa-

rameters, and it converges to maximum likelihood estimates

when adaptation data increases. In MLLR adaptation, a set of

linear transformation matrices is estimated to transform the

model parameters and maximize the likelihood on the adapta-

tion data. Furthermore, in order to obtain robust estimation of

the linear transforms, maximum a posteriori linear regression

(MAPLR) estimation has also been proposed to effectively

adapt model parameters [3, 4, 5].

These methods work well for speaker adaptation. How-

ever, in a real time telephony speech recognition system, model

space adaptation techniques are not preferred because appli-

cation in the model space requires the expensive operations

of saving, updating and re-quantizing the speaker-dependent

†The author was at Microsoft when this work was performed.
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) model parameters. Therefore, as a dual of constrained

R adaptation, an efficient feature space maximum like-

d linear transform (fMLLR) based speaker adaptation

od was first proposed in telephony applications [6]. By

g fMLLR, it is only necessary to apply a linear transform

e feature vectors for every frame.

aximum likelihood estimation is a data driven parame-

stimation approach. When adaptation data is very lim-

the estimated linear transform is often unreliable and

cause the adapted system to have even worse perfor-

ce than the baseline system. In [6], in order to address

problem, a variant of discounted likelihood linear regres-

(DLLR) [7] with smoothing statistics obtained from the

ker independent acoustic model is used to smooth the fM-

statistics. In this work, we derive the feature space MAP

PLR) as a counterpart of the model space MAPLR. We

the fMAPLR formulation is similar to MAPLR in modi-

g the sufficient statistics with prior information.

he rest of the paper is organized as follows: In Section 2

eview the feature space MLLR algorithms and describe

implementation issues for real time telephony applica-

. Section 3 presents the fMAPLR solution and discusses

elationship to fMLLR. In Section 4, the hyperparameter

ation of the prior distribution of the linear transform is

ribed. We show the experimental results in Section 5.

paper is concluded in Section 6.

2. FMLLR AND IMPLEMENTATION

Algorithm for fMLLR

ure space maximum likelihood linear regression for on-

telephony application was proposed in [6]. As shown in

the constrained model space linear transform is equivalent

feature space linear transform when a single transforma-

is used. Let ot be the n-dimensional feature vector at

t in the original feature space, the transformed feature ôt

ôt = Aot + b = Wξt, (1)

re A is the n×n rotation matrix, b is the n× 1 bias term,

[1 oT
t ]T is the (n+1)× 1 extended observation vector
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and W = [b A] is the n × (n + 1) extended transformation

matrix. The transform parameters are estimated by optimiz-

ing the following auxiliary Q-function,

QML = −1
2

∑
t,m

γm(t){log |A|2

+ (Wξt − μ(m))T Σ(m)−1(Wξt − μ(m))}, (2)

where μ(m) and Σ(m) are the mean and covariance for Gaus-

sian component m and γm(t) is the posterior probability of

being in Gaussian m at time t.
Because of the log determinant in the objective function,

generally there is no explicit closed-form solution for the trans-

formation matrix W . In this work we chose to follow the iter-

ative solution in [8]. We assume the covariance matrices to be

diagonal: Σ(m) = diag([1/σ(m)2
1 1/σ(m)2

2 . . . 1/σ(m)2
n ]).

Let the i-th row of W be wi = [Wi1 Wi2 . . . Win]T . Tak-

ing the derivative of QML with respect to wi and equating to

zero, we can get,

∂QML

∂wi
= β

pi

pT
i wi

− G(i)wi + k(i) = 0, (3)

where β =
∑
t,m

γm(t) is the total count, pi is the extended

cofactor vector [0 cof(Ai1) . . . cof(Ain)]T and the sufficient

statistics of G(i) and k(i) are as follows:

G(i) =
∑

t

ξtξ
T
t

∑
m

γm(t)

σ
(m)2
i

(4)

k(i) =
∑

t

ξt

∑
m

γm(t)μ(m)
i

σ
(m)2
i

. (5)

By using the direct method over rows [8], we get an itera-

tive solution,

wi = G(i)−1(αpi + k(i)), (6)

where α is solved from the following quadratic equation and

the root that maximizes the Q-function is selected.

α2pT
i G(i)−1pi + αpT

i G(i)−1k(i) − β = 0 (7)

Note that equation 3 and 6 are slightly different from [8]

since in our notation all vectors are column vectors unless

transposed explicitly.

2.2. Implementation Issues

For the real time application of fMLLR in multiple parallel

channels, memory usage and computational complexity need

to be optimized. Unlike in the model space mean MLLR, the

sufficient statistic G(i) in equation 4 is a second-order statis-

tic. If we store the statistics at the Gaussian level, we need to

store
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O(n2) parameters for each Gaussian, which amounts to

es the model size. This is not affordable for reasonably

acoustic models. Therefore, we chose to store the statis-

in a global G(i) matrix and k(i) vector. The disadvantage

obal storage is that we need O(n3) multiply accumulates

aussian component per frame [8].

n addition to the statistics accumulation, the fMLLR trans-

estimation itself is also computationally expensive. Var-

methods have been proposed to decrease the computa-

l complexity of feature space adaptation for real-time

ications. For example, in [9] the author proposed to use

hastic gradient descent. Some engineering trade-offs can

speed up fMLLR significantly. First, by using block di-

al transforms we can decrease the computation of the

re transforms and significantly decrease the complex-

f accumulating the global sufficient statistics. In all our

riments, we have used block diagonal transforms with

ocks. Second, considering that G(i) is real symmetric

positive definite, Choleski decomposition can be used to

d up the matrix inversion process. Finally, it is possible to

mulate statistics only from the Gaussian component with

ighest posterior probability. In practice, we have found

the performance difference is minor but the speedup is

ificant.

FEATURE SPACE MAXIMUM A POSTERIORI
LINEAR REGRESSION

me telephony applications like name dialing, each phone

lasts for only a few utterances and the data available for

tation is very limited. This usually leads to a biased fM-

adaptation due to overtraining. In order to address this

stness issue, we apply the maximum a posteriori frame-

and derive the feature space maximum a posteriori lin-

egression (fMAPLR) based speaker adaptation as a coun-

rt of the model space MAPLR.

he auxiliary Q-function for fMAPLR with prior matrix

ibution of p(W ) is given by

QMAP = QML + log p(W ), (8)

e assume the feature transformation matrix W follows

lliptically symmetric matrix variate distribution [3],

W ) ∝ exp

[
−1

2

n∑
i=1

(wi −Mi)TV−1
i (wi −Mi)

]
, (9)

re Mi is the location parameter and Vi is the scale pa-

ter for wi. Mi and Vi are called the hyperparameters of

rior distribution.

aking the derivative of equation 8 and substituting in

tion 3 and equation 9, we have:

∂QMAP

∂wi
= β

pi

pT
i wi

− Ĝ(i)wi + k̂(i) = 0, (10)



where

Ĝ(i) = G(i) + V−1
i (11)

k̂(i) = k(i) + V−1
i Mi (12)

Equation 10 has the same form as equation 3. Therefore,

we can estimate the fMAPLR transform in the same iterative

way as in fMLLR (equation 6), but with different statistics of

Ĝ(i) and k̂(i). In practice, we have found that four iterations is

sufficient for the convergence of both fMLLR and fMAPLR.

The new statistics are a smoothed version of the fMLLR

statistics with the prior knowledge about the transform dis-

tribution incorporated. Moreover, if we compare fMAPLR

and fMLLR, it is clear that, when the adaptation data amount

is very small, equation 11 of fMAPLR is dominated by the

statistics from the prior distribution. When more adaptation

data is available, equation 11 converges to equation 4. In this

way, the fMAPLR provides robustness to small amounts of

adaptation data.

4. PRIOR DISTRIBUTION HYPERPARAMETER
ESTIMATION

One issue of MAP estimation is the estimation of the hyper-

parameters of the prior distribution. In a strict Bayesian ap-

proach, the hyperparameters are assumed known based on a

common or subjective knowledge about the stochastic pro-

cess. In most cases it is difficult to obtain this common knowl-

edge about the informative prior distribution. As a popular so-

lution, the empirical Bayesian approach is widely used where

the hyperparameters are learned from the data.

Assume there are K observations of the transformation

matrices {W (1), . . .W (K)}, the hyperparameters can be esti-

mated by,

Mi =
1
K

K∑
r=1

w
(r)
i (13)

Vi =
1
K

K∑
r=1

(w(r)
i −Mi)(w

(r)
i −Mi)T (14)

where w
(r)
i is the i-th row of the matrix W (r).

In model space MAPLR, researchers have proposed to

derive the set of transformation matrices from the speaker-

independent (SI) acoustic models [4] or from the adaptation

data [3, 5]. Both methods make use of the adaptation class

tree structure to generate a set of matrices for each adaptation

class. However, in fMAPLR a single class is used. Thus, it

is straightforward to derive the set of transformation matrices

directly from SI model or the data. In our experiments, an

efficient algorithm is developed to learn the prior distribution

of the feature transformation matrices. Speech data from the

disjoint devleopment set is extracted and one fMLLR feature

transform matrix is estimated for each of these speakers. Then
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tions 13 and 14 are used to estimate the prior distribution

in fMAPLR in future tests.

5. EXPERIMENTS

eriments are conducted using two internal telephony speech

gnition databases, D1 and D2 respectively. Both test sets

S English telephony databases over diverse topics such

gits, letters, names and dates and covering landline, speak-

one and cell phone conditions. In D1, the development

sed for prior distribution estimation contains about 300

kers, each of them provided about 45 seconds of speech

. The corresponding test set contains about 100 speakers.

simpicity, diagonal scale factor matrices, Vi, were used in

rior distribution. In order to further verify the robustness

e proposed approach, we used the prior distributions de-

from D1 to test fMAPLR on D2 which contains data in a

noisy environment. Test set D2 contains 82 dialogs, with

nd 19 utterances on average for each dialog. Each utter-

typically contains around 1 second of speech data. A

ker independent, triphone-based model is used. Senone

tering is performed based on a phonetic decision tree and

odel has about 50K Gaussians.

e experimented with two different methods for organiz-

he adaptation data and applying the adapted transforms:

h mode and incremental mode. In batch adaptation mode,

rst T frames of speech data are used to derive the fea-

transformation matrix. The estimated feature transform

en applied to the remainder of the data in the dialog. In

mental adaptation mode, as in batch mode, the adapta-

transform is estimated after T frames of data. However,

cremental mode, we continuously update and apply the

tation transform as new data is seen. In our incremental

e experiments, we updated and applied the new transform

each utterance in the dialog.

Batch mode experiments

h mode results for fMLLR and fMAPLR adaptation ex-

ents on D1 and D2 are shown in Table 1 and Table 2

ectively. In Table 1, it is observed that for fMLLR, when

100 frames of adaptation data are available, poor fea-

transforms are estimated causing a dramatic degradation.

when the adaptation data amount increases to 300 frames

speaker, the fMLLR adaptation still did not perform as

as the baseline without adaptation for D1. On the other

, fMAPLR provides a much more stable result even at

xtreme of only 100 frames of adaptation data. fMAPLR

le to achieve a 3.2% relative gain after estimating trans-

s from only 300 frames of data.

o test the robustness of fMAPLR and the generalization

e prior distribution estimation, we applied the prior dis-

tion estimated on D1 to the fMAPLR estimation for the

set of D2. These results are shown in Table 2. The re-



Table 1. WER on D1 test set in batch mode.

T = 100 T = 300
No adaptation 11.33 11.33

fMLLR 21.55 11.84

fMAPLR 11.36 10.97

sults show that fMAPLR is more robust than fMLLR even

with the hyperparameters learned from from a database with a

mismatched environment. The reader should also notice that,

a larger T will not necessarily lead to a lower overall WER

since that reduces the amount of data to be decoded using

speaker adapted system. This effect is more significant if the

dialog provided by each speaker is very short. Of course, the

system could be modified to re-decode the input after adapta-

tion to regain some of this loss.

Table 2. WER on D2 test set in batch mode.

T = 100 T = 300
No adaptation 14.27 14.27

fMLLR 18.09 13.52

fMAPLR 13.14 13.61

5.2. Incremental mode experiments

Incremental mode results for fMLLR and fMAPLR on D1

and D2 are shown in Table 3 and Table 4 respectively. As in

batch mode, Table 3 shows that fMAPLR incremental adap-

tation performs better than the fMLLR adaptation. Unlike

batch mode, fMLLR now gives some improvement over the

baseline at T = 100 case because the poor transform esti-

mated from the first 100 frames of data has been corrected

when more data are decoded and used for transform estima-

tion.

Table 3. WER on D1 test set in incremental mode.

T = 50 T = 100 T = 300
No adaptation 11.33 11.33 11.33

fMLLR 12.97 10.86 10.51

fMAPLR 10.48 10.45 10.45

Table 4 shows incremental adaptation at different time de-

lays. In this experiment T = 0 means the incremental adap-

tation is started as soon as the first utterance is decoded. The

prior distribution estimated on D1 has generalized very well

to D2. Moreover, fMAPLR performs consistently better than

fMLLR, and it shows the best performance by conducting

fMAPLR as soon as the first utterance is decoded and avail-

able for adaptation, this is critical for the applications such

as name dialing, where the whole dialog contains only a few

dialog turns.
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Table 4. WER on D2 test set in incremental mode.

T = 0 T = 100 T = 300
No adaptation 14.27 14.27 14.27

fMLLR 15.83 13.10 13.05

fMAPLR 12.72 12.81 12.95

6. CONCLUSION

ure space adaptation such as fMLLR is preferred to model

e adaptation in telephony applications. However, with

sparse adaptation data, the fMLLR estimated feature trans-

s could be unstable. In this paper, we apply MAP frame-

to feature space transformation and derive the fMAPLR

counterpart of the model space MAPLR. Experimental

lts show that fMAPLR performs more robustly than fM-

when the adaptation data is very limited.
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