
Prompt Selection with Reinf
in an AT&T Call Routi

Charles Lew
Giuseppe Di Fab

AT&T Labs – Re
180 Park Ave. – Florham Park

{clewis, pino}@resear

Abstract
Reinforcement Learning (RL) algorithms provide a type of
unsupervised learning that is especially well suited for the
challenges of spoken dialogue systems (SDS) design. SDS are
constantly subjected to new environments in the form of new
groups of users, and RL provides an approach for automated
learning that can adapt to new environments without costly
supervision. In this paper, we describe some results from
experiments with RL to select prompts for a call routing
application. A simulation of the dialogue outcomes were used
to experiment with different scenarios and demonstrate how RL
can make a system more robust without supervision or
developer intervention.
Index Terms: spoken dialogue systems, reinforcement learning,
call routing

1. Introduction
Reinforcement Learning (RL) systems simultaneously learn and
perform without supervision. Instead of learning a single, static
solution, RL implementations learn and adapt continuously over
time. This makes RL techniques applicable to a variety of real-
world problems that defy supervised machine learning (ML)
solutions.

Many environmental factors (such as the volume of calls
received, the hours that the application is in operation, and the
geographical region where the application is deployed) can
affect the operation of an SDS application, yet are unknown at
the time that the application is designed. Based on their
expertise, User Experience (UE) engineers have to make many
non-trivial decisions, such as the system’s semantic scope (e.g.,
call-types in the case of call routing systems), the dialog
manager strategy which will drive the human-machine
interaction, and many other facets of these applications. Often,
these experts cannot agree on the best type of opening prompt,
for example, or the best compromise between hand-holding for
and empowerment of the user.

After the application is deployed and its performance
analyzed, the UE expert can use this data to adjust the
application and deploy it a second time. This is repeated as
often as necessary. Each re-deployment requires human
intervention for data transcription, data analysis, re-authoring,
and quality assurance beforehand, engineering resources for the
re-deployment itself, and monitoring after to determine the

effe
twe

an
ass
pro
way
the
sys
exp
pro
pro
The
situ

ben
sys
exp
dec
opt
des
tim

We
AT
pro
from
the

trie
init
amo
cus
cen
rec
han

use
cus
to t
In t
for
run
diff

1770

INTERSPEECH 2006 - ICSLP
orcement Learning
ng Application

is
brizio

search
, NJ 07932 – USA
ch.att.com

cts of the re-deployment and to determine if further
aking is necessary.

The goal of this experiment was to explore the potential for
RL solution to reduce the need for re-deployment by

uming responsibility for prompt selection. When the
mpts for a system are created, the designer has a number of
s of phrasing each one. For example, the system may take

 initiative and tell the user what their options are (closed or
tem initiative prompt), or the system may invite the user to
ress their needs in their own words (open or user initiative
mpt). Some prompts use a fictional personality, and some
mpts may try to reassure the user with friendly instructions.
 effectiveness of each kind of prompt depends on the
ation and how well they are received by the user.

The unsupervised learning of an RL system can have great
efits here, where human supervision of changes to the
tem is costly and time-consuming. Rather than force the UE
ert to decide between prompts, this approach defers that
ision and provides a method to let the system exploit the
imal prompts over time. Potentially, this can make dialogue
igns more robust by allowing the decision to be made at run-
e, based on feedback from the environment.

2. The Application
 applied this approach to a call routing application used by
&T’s small business customers to report and track service
blems. This application tries to elicit enough information

 the caller to route the call to a call center that specializes in
ir request.

Call centers are sensitive to call volume, so the application
s to route calls as specifically as possible. By accomplishing
ial request type identification, the application can reduce the
unt of time that human operators spend speaking to

tomers, and increase the number of customers that the call
ter can handle. Conversely, the more unclassified calls
eived by a call center, the fewer customers that they can
dle.

The purpose of the call routing process is to elicit the
r’s intent. If the caller asks to be routed directly to a human
tomer service representative (CSR), a special prompt is used
ry to convince the user to interact with the automated system.
his application, the UE expert created four potential prompts
this situation, which we will refer to as CSR prompts. They
 from completely open to completely closed, and utilize
erent levels of hand-holding and reassurance. In our

September 17-21, Pittsburgh, Pennsylvania

experiments, the choice of which prompt to use was made with a
RL algorithm.

3. RL, and RL for Voice Applications
RL-type techniques have been used in voice applications before.
In ([3] and [7]), RL systems are used to plan high-level dialogue
strategies. These systems evaluated a design problem and
created an optimal solution for deployment. This application of
RL does not derive a single, optimal solution, rather, it
implements an adaptive one. The approach used here will
demonstrate a way for the UE expert to author a range of
possible prompts and then leave it to the system to determine
which one should be used.

At the completion of a task (or at some intermediate step in
a task), the RL system receives feedback which it uses to refine
its behavior in future episodes. Unlike supervised learning,
which requires a large set of labeled data, RL can be put into
motion without any pre-compiled model of its environment.
There are many variations of the RL problem and possible
solution implementations (as described in [2], [4], and [8]).

The components that most RL systems have in common are
a policy to guide its decisions, a value function to describe the
value that the system puts on a state (or a state/action pair)
within the course of problem-solving, and a reward function to
describe the environment’s reinforcement of a course of action.

The policy is the algorithm that makes the decisions, and
the data structures that support it. We denote the current policy
as π, and the optimal policy as π*. π is the subject of continuous
refinement in RL, with the goal, of course, of achieving π* or
close to it.

The value function describes the value that the system puts
on a particular state, or state/action pair. This function relies on
the experience of the system to ascribe a long-term utility to
available actions, and informs the choices made by the policy.
Value functions as they are used in this paper are based on the
action taken in a particular state. These are called the action-
value functions in the literature and denoted as Q(s,a). We will
refer to these too as simply value functions. The most accurate
action-value function, Q*(s,a), will result in the best policy, π*.

The reward function describes the feedback from the
environment, it is what the value functions try to predict. Part
of the RL problem can be thought of as a refinement of the
value functions to more closely approximate the reward
function. It is possible for there to be both intermediate rewards
and final rewards in the decision making process. Only final
rewards will be provided in this application.

Learning occurs with these components by a process called
Iterative Policy Generation (IPG). In this process, there is a
feedback loop between the policy, π, the value function, Q(s,a),
and the reward function:

1. The system makes a decision using policy π.
2. The reward function provides feedback on the decision.
3. Decision value function is refined
4. A new policy, π|, is created, based on the new value

function. This is the policy used in the next dialogue

Because the new policy is based on an improved value
function, it will, on average, achieve improved rewards. As the
number of iterations increases, and the value function improves,

the
pol
fun
dep

exp
crit
bet
tak
the
this
fun
from
app
bec
sce
from
mu
Thi
size

opt
dat
a d
per

The
use
des
man
was
the
dat
ran

was
CS
dia
due
rou
out
eac

dia
que
exa
pro
sim
tha
com

han
to s
rou
and
pur

1771

INTERSPEECH 2006 - ICSLP
 policy approaches π*. In order for this system to work, the
icy must take advantage of the accuracy of the value
ctions to maximize the expected reward. How this is done
ends on the RL implementation used.

The so-called Monte Carlo approach relies entirely on
erience with the environment to improve policy. The two
ical operations are refining the value functions (performed
ween well-defined episodes), and deciding which action to
e from a given state s (performed during episodes). When
 system receives reinforcement from an episode, it integrates
 new data into relevant value functions. If the reward
ction never changes, a straightforward average of all returns

 a state-action pair will provide a continuously improving
roximation of the true value of the pair as more data
omes available, by the law of large numbers. In this
nario, there is no need to weigh new data any differently

 old data. If we cannot make this assumption, however, we
st discount the old values as new data becomes available.
s is done by scaling the effect of new rewards with a step-
 (α) as follows:

Q(s,a)’ ← Q(s,a) + α (r – Q(s,a)) (1)

This distinguishes RL from systems that use statistical
imization without consideration for the order in which the
a was received. This makes an RL system more effective for
ynamic environment where typical optimization is not a
fect fit.

4. Data Collection
 application, including the application logic and the prompts
d, was designed by an AT&T User Experience expert. This
ign was then implemented using Florence, the dialogue
ager in AT&T’s VoiceTone® system [1]. The application
 deployed under the VoiceTone® platform, which provided

 logging used for data collection. RL was not applied in the
a collection. During collection, the system selected a prompt
domly at each decision point.

Over the three months that the application was in use, data
 collected on 9,786 dialogues. Of these calls, 845 used a

R prompt. The data collected on each call included the
logue states entered, prompts used, number of re-prompts
 to silence timeouts or speech recognition rejections, and the
ting destination of the call. We simulated dialogue
comes in the experimental phase based on the frequency of
h outcome for each CSR prompt in the collected data.

The general idea of the RL reward is to give successful
logues a higher score than non-successful ones. The
stion of what constitutes a “successful” dialogue has been
mined before, for example in the context of predicting
blematic dialogues [9]. In our case, we are not limited to
ply successful or not-successful: we can also assign scores
t correspond to varying levels of success after the dialogue is
plete.
 The most obvious criterion to use is how the routing was

dled. If the call was routed to a call center it was successful
ome degree. If the user hung up before the call could be
ted, it was not. The reason for the hang-up is unknown to us,
 could be unrelated to the system design, but for our
poses this type of dialogue was considered not-successful.

There is one routing destination, the general CSR line, that
is used as a fallback when the system cannot gather enough
information to choose one of the others. This occurs when the
system has given up on eliciting more specific information from
the caller. Although this is not as bad as a complete disconnect,
we would prefer a well-specified routing. This outcome was
assigned a score greater than the score for a hang-up, but less
than the score for more specifically routed calls.

0

10

20

30

40

50

60

100 200 300 400 500 600 700 800

Dialogue Count

P
er

ce
nt

ag
e

of
 T

yp
e

Default Routing

Disconnected by Caller

Figure 1 Number of non-successful dialogues from
gathered data.

After a call was scored, the reward value was used to
update the appropriate value function, as per Equation 1.

For comparison to the experimental data, Figure 1 shows
the number of calls disconnected by the user before routing and
the number of calls that were routed to the default CSR line
(default routing) during data collection with random prompt
selection. The graphs in this paper show one data point for
every 100 dialogues that used a CSR prompt. This value is
presented as a percentage of calls of each type.

0

10

20

30

40

50

60

70

80

1 9 17 25 33 41 49 57 65 73 81 89 97

Dialog Count

P
er

ce
nt

ag
e

of
 T

yp
e

Figure 2 Number of non-successful dialogues in a
simulation of a stable environment. (Legend as per fig. 1)

5
Fig
this
dia
dia
dia
rem
up
in d
is d

the
dro
has
Flu
nex

the
rea
pre
info
def

6.
The
out
To
cha
mo
for
cha
pro
of
imm
Imm
num
bef
def
at
low
lev
the

in o
pro
val
and
(Fig
we

1772

INTERSPEECH 2006 - ICSLP
. Simulated RL in a Stable Environment
ure 2 is a typical outcome of the first set of experiments with
 simulation, where a data point was computed every 100
logues, for a percentage of each type. The number of
logues with default routing drops sharply after around 2500
logues. The number of dialogues where the caller hangs up
ains fairly steady, despite significant differences in the hang-
rates between the prompts. Because many more calls result
efault routing than in the caller hanging up, prompt selection
ominated by consideration for the former.

In the calls leading up to the steep drop in default routing,
 system develops the value function for each prompt. The
p occurs when the prompt that results in the highest rewards
 attained a value high enough to keep it in the lead.
ctuation of value scores is illustrated in more detail in the
t section.

The results of this simulation demonstrate the potential for
 Monte Carlo approach to improve the routing of calls. In a
l deployment, over time, the system would have developed a
ference for the prompts that were more successful at eliciting
rmation from the user, resulting in fewer calls routed to the

ault operator.

Simulated RL in a Dynamic Environment
 environment in this simulation is produced by the dialogue

come models, which are compiled from the collected data.
simulate a change in the environment, the models were

nged halfway through each run. At this point, the outcome
del for the top performing prompt is switched with the model
the worst performing one. Although this isn’t a realistic
nge in the environment (the simulated user reactions to the
mpts), it is drastic enough to demonstrate the adaptive effects
the RL algorithm. As shown in Figure 3, this had an
ediate affect on the simulated percentage of default routing.
ediately after the outcome models were switched, the
ber of calls with default routing returned to its initial level,

ore RL took effect. Within 100 dialogues, the percentage of
ault routing dropped again but much more quickly than it did
the beginning of the process. This rapid re-adjustment
ered the number of default routing calls down almost to the

el seen before the model change. This pattern was typical of
 runs in this experiment.

In Figure 4, we can see what happened behind the scenes
ne of these runs. This chart shows the value for each of the

mpts as new data is received. In the first half of the run, the
ue for prompt 031 gradually increases to become the highest,
 then the number of calls routed to the default destination
ure 3) declines drastically. This is the same behavior that

saw in the previous experiment, without the model change.

0

10

20

30

40

50

60

70

80

0
60

0
12

00
18

00
24

00
30

00
36

00
42

00
48

00
54

00
60

00
66

00
72

00
78

00
84

00
90

00
96

00

Dialogue Count

P
er

ce
nt

ag
e

of
 ty

pe

Figure 3 Number of non-successful dialogues in a
dynamic environment. (Legend as per fig. 1)

Halfway through the run, the model that generated the
results for prompt 031 dialogues, the most valued prompt, was
switched with the model that generated results for prompt 032,
the least valued prompt. This is where Figure 3 shows a large
up-tick in the number of exceeded re-prompt calls, and where
the value for prompt 031 drops precipitously in Figure 4.

Within a hundred dialogues of the up-tick, however, the
number of calls routed to the default destination is down to a
much lower level. This adjustment happened very quickly
because the second-most valued prompt, prompt 030, takes over
as soon as the value of prompt 031 declines. This immediately
lowers the percentage of default routings. Eventually the model
for prompt 032 (originally the model for prompt 031) takes the
lead again, and the percentage of calls routed to the default call
center returns to the same level seen before the model switch.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
70

0
14

00
21

00
28

00
35

00
42

00
49

00
56

00
63

00
70

00
77

00
84

00
91

00
98

00

Dialogue Count

P
ro

m
p
t V

al
u
e

prom pt 029

prom pt 030

prom pt 031

prom pt 032

Figure 4 Prompt scores in a dynamic environment.

7. Conclusions
This brings to light an aspect of exploration that is not typically
mentioned: beyond its use for the initial exploration to arrive at
the best action, beyond using exploration to make sure that the
most highly-valued action is still the most highly-rewarded,

exp
fun
of t
acti
its p
con
the
pro

spo
that
con
of e
a n
rela
the
how
dem
mak

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

1773

INTERSPEECH 2006 - ICSLP
loration in RL also maintains the accuracy of the value
ctions of all of the state/action pairs throughout the lifetime
he application. In this experiment, when the top-performing
on stopped performing, the second-best action quickly took
lace, limiting the effect of the environmental change. This

trolled degradation of performance provided a safety net for
system until it was able to readjust the values of the affected
mpts.

These experiments demonstrate that it is possible to frame
ken dialogue system prompt selection as an RL problem, and
 it is possible for the Monte Carlo RL technique to provide
tinuous, unsupervised learning for this task. In the first set
xperiments, it was demonstrated how this approach works in
ew environment, with no assumptions made about the
tive values of each action. In the second set of experiments,
environment was dynamic and the system was tested to see
 well it could adapt. This provided an interesting
onstration of how the exploration inherent in RL systems
es them more robust to change.

8. References
G. Di Fabbrizio and C. Lewis, “Florence: A Dialogue
Manager Framework for Spoken Dialogue Systems,”
ICSLP 2004, 8th International Conference on Spoken
Language Processing, Jeju, Jeju Island, Korea, October 4-
8, 2004.
L.P. Kaelbling, M.L. Littman, “Reinforcement Learning: A
Survey,” Journal of Artificial Intelligence Research 4, May
1996, 237-285
E. Levin, R. Pieraccini, and W. Eckert, “A Stochastic
Model of Human-Machine Interaction for Learning Dialog
Strategies,” IEEE Transactions on Speech and Audio
Processing, Vol. 8 No. 1, January 2000
D. Litman, M. Walker, and M. Kearns, “Automatic
Detection of Poor Speech Recognition at the Dialogue
Level,” ACL-1999
Mitchell, T., Machine Learning, McGraw-Hill, 1997.
S. Singh, M. Kearns, D. Litman, and M. Walker,
“Reinforcement Learning for Spoken Dialogue Systems,”
NIPS-1999
S. Singh, D. Litman, M. Kearns, and M. Walker,
“Optimizing Dialogue Management with Reinforcement
Learning: Experiments with the NJFun System,” Journal of
Artificial Intelligence Research 16 (2002), 105-133
Sutton, R. S. and Barto, A. G., Reinforcement Learning:
An Introduction, MIT Press, Cambridge, MA, 1998
M. Walker, I. Langkilde, J. Wright, A. Gorin, and D.
Litman, “Learning to Predict Problematic Situations in a
Spoken Dialogue System: Experiments with How May I
Help You?” In Proc. 1st Conference of the North American
Chapter of the Association for Computational Linguistics
(NAACL), 2000.

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Abstracts Book
	Abstracts Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
