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ABSTRACT

We propose a dynamic time-warping (DTW) based distortion mea-
sure for measuring the dissimilarity between pairs of left-to-right
continuous density hidden Markov models with state observation
densities being mixture of Gaussians. The local distortion score re-
quired in DTW is defined as an approximate Kullback-Leibler di-
vergence (KLD) between two Gaussian mixture models (GMMs).
Several approximate KLDs are studied and compared for pairs of
GMMs with different properties, and one of them is identified for
being used in our DTW-based HMM dissimilarity measure. In an
experiment of identifying automatically the subsets of confusable
Putonghua (Mandarin Chinese) syllables, it is observed that the re-
sult based on the proposed HMM dissimilarity measure is highly
consistent with the one based on syllable recognition confusion
matrix obtained on a testing data set.
Index Terms: speech recognition, dissimilarity measure, hidden
Markov model, Kullback-Leibler divergence.

1. INTRODUCTION

After many years research, left-to-right (LR) Gaussian mixture
continuous density hidden Markov model (CDHMM) remains pre-
dominant as a speech modeling technique in automatic speech
recognition (ASR) area. How to measure the dissimilarity of two
given CDHMMs without running recognition experiments has been
an important research topic for several decades due to its poten-
tial applications in a variety of contexts in ASR (e.g., [4, 8, 15,
14, 17, 16, 1, 2]). In a pioneering work [6], Juang and Rabiner
proposed to use Kullback-Leibler divergence (KLD) as a dissimi-
larity measure of two HMMs with arbitrary observation densities,
but only experimental results on discrete HMMs (DHMMs) were
reported. A similar approach was applied to measuring KLD for
pairs of LR-CDHMMs in e.g., [14]. In order to calculate the KL
divergence, a Monte Carlo (MC) simulation procedure is used to
generate a large number of observation sequences from the HMMs
being measured. Alternatively, some training data has to be used
for calculating KLD as reported in [8]. It is not practical to use
the above procedures in ASR applications that require a quick re-
sponse and/or have no access to training data. To address this is-
sue, an upper bound of the KLD for ergodic DHMMs and CDHMMs
was proposed in [3]. It was extended recently to calculate the upper
bound of the KLD [13] and a so-called Average Divergence Dis-
tance (ADD) [12] for LR-CDHMMs. Other heuristic approaches
to measuring efficiently the dissimilarity between HMMs were
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reported for both DHMMs (e.g., [4]) and LR-CDHMMs (e.g.,
17, 16, 1, 2]).
Similar to the applications in [11, 15, 17, 1, 2], we’ve also

working on a problem of how to identify automatically the
ets of confusable words in the vocabulary of a given ASR task
out doing recognition experiments on some testing data. By
idering the following two facts:

• Most of the current state-of-the-art ASR systems are still
based on a so-called “Beads-on-a-String” notion that a word
is composed of a sequence of phone segments, and each
phone segment (or a basic speech unit) is modeled by an
LR-CDHMM;

• The transition probabilities play a less important role in LR-
CDHMM in comparison with that of state observation den-
sities;

propose to represent a specific pronunciation of a word as a
ence of state-dependent Gaussian mixture models (GMMs).
a representation would be a reasonable approximation. There-

, the problem of measuring the confusability of two vocab-
y words can be cast as a problem of measuring the dissimi-
y of two sequences of GMMs with possibly different lengths.

a problem can be solved efficiently by using a dynamic time-
ing (DTW) approach as described in detail in e.g., [10]. The

technical issue then becomes how to measure the dissimilarity
airs of GMMs that can be used as the local distortion scores
ired in DTW. The KLD of GMMs offers a good theoretical
er. Because no closed form solution exists for calculating

KLD of GMMs, we have studied several approximate KLDs
osed originally in [5] for pairs of GMMs with different “to-
aphy” properties [9]. It is the purpose of this paper to report
study on this topic.
The rest of the paper is organized as follows. In Section 2, we
ribe our DTW-based procedure for measuring the dissimilar-
etween pairs of LR-CDHMMs. In Section 3, we compare, via
lation experiments, two approximation methods with the one
d on MC simulation for calculating the KLD of GMMs. As a
lt, one of them is identified for being used in our DTW-based
M dissimilarity measure. In Section 4, we report experiments
ow to use the proposed HMM dissimilarity measure for identi-
g automatically the subsets of confusable Putonghua syllables.
lly, we conclude the paper in Section 5.

. A DTW-BASED PROCEDURE FOR MEASURING
DISSIMILARITY OF TWO LR-CDHMMS

sider two LR-CDHMMs, {λi, i = 1, 2}, whose states from
to-right are denoted as {q(i)

1 , · · · , q
(i)
Ni

; i = 1, 2}, where Ni is
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the number of states for λi. For each state q
(i)
s , its observation den-

sity is a GMM denoted as p(Y |q(i)
s ) =

PM
(i)
s

m=1 c
(i)
smN (Y ; μ

(i)
sm, Σ

(i)
sm)

where M
(i)
s is the number of Gaussian components for the sth state

of λi; c
(i)
sm’s are nonnegative Gaussian mixture weights with con-

straint
PM

(i)
s

m=1 c
(i)
sm = 1; N (Y ; μ

(i)
sm, Σ

(i)
sm) is a normal distribu-

tion with a D-dimensional mean vector [μ
(i)
sm1, · · · , μ

(i)
smD]Tr and

a D ×D diagonal covariance matrix Σ
(i)
sm = diag{(σ(i)

sm1)
2, · · · ,

(σ
(i)
smD)2}.

As described in [10], by introducing two warping functions

j = φ1(t) t = 1, · · · , T ,

k = φ2(t) t = 1, · · · , T ,

where j = 1, · · · , N1, k = 1, · · · , N2, and T is the length of a
warping path, we propose to use the following DTW procedure to
measure the dissimilarity of two LR-CDHMMs, λ1 and λ2:

Step 1: Initialization

DA(1, 1) = d(q
(1)
1 , q

(2)
1 ) (1)

where d(q
(1)
1 , q

(2)
1 ) is the dissimilarity measure between the

GMM for state q
(1)
1 and the GMM for state q

(2)
1 .

Step 2: Recursion
For 1 ≤ j ≤ N1, 1 ≤ k ≤ N2 such that j and k stay
within the allowable grid defined by the following local
continuity constraints:

φ1(t + 1) − φ1(t) ≤ 1 ,

φ2(t + 1) − φ2(t) ≤ 1 ;

compute

DA(j, k) = min

8><
>:

DA(j − 1, k) + d(q
(1)
j , q

(2)
k ),

DA(j − 1, k − 1) + d(q
(1)
j , q

(2)
k ),

DA(j, k − 1) + d(q
(1)
j , q

(2)
k )

9>=
>; ; (2)

where d(q
(1)
j , q

(2)
k ) is the dissimilarity measure between the

GMM for state q
(1)
j and the GMM for state q

(2)
k . Con-

sequently, only values of (j, k) that can be reached from
(1, 1) and can end ultimately at (N1, N2) are evaluated in
the above recursion step.

Step 3: Termination

DHMM (λ1, λ2) =
DA(N1, N2)

To
, (3)

where To is the length of the optimal warping path iden-
tified at the end of the dynamic programming recursion.
DHMM (λ1, λ2) calculated as the above is defined to be
the dissimilarity score between λ1 and λ2.

In the above procedure, a key technical issue is how to de-
fine the local dissimilarity score d(q

(1)
j , q

(2)
k ). The following KLD

of GMMs offers a good theoretical answer since the KLD is the
average discrimination information per observation between two
hypotheses modeled as random variables:

KL(p(Y |q(1)
j ), p(Y |q(2)

k )) =

Z
p(Y |q(1)

j ) log
p(Y |q(1)

j )

p(Y |q(2)
k )

dY. (4)
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ortunately, there is no closed form solution for the above in-
ation. Therefore some approximations are required. Among
y choices, the methods proposed in [5] attracted our special
tion. We therefore conducted a comparative study via sim-
on experiments with a hope to identify the most appropriate
for being used in the above DTW procedure. In the following
ion, we report the result of our study on this sub-topic.

3. APPROXIMATE KLDS OF TWO GMMS

imply the notation, let’s consider two GMMs, whose parame-
are denoted as θi = {c(i)

m , μ
(i)
m , Σ

(i)
m } for i = 1, 2 respectively.

number of Gaussian components are denoted as M(1) and
) accordingly. The first method we studied is to use Monte-
o (MC) simulations to approximate the KLD of two GMMs as
ws:

L(p(Y |θ1), p(Y |θ2)) ≈

1

Nsim

NsimX
t=1

log
p(Yt|θ1)

p(Yt|θ2)
, (5)

re Yt are sampled from p(Yt|θ1) and Nsim is the number of
ples simulated. In our experiments, Nsim = 1000.
The second method we studied is a so-called matching based
oximation method proposed in [5]. The approximate KLD of
GMMs is calculated as follows:

KL(p(Y |θ1), p(Y |θ2)) ≈

M(1)X
m=1

c(1)
m [log

c
(1)
m

c
(2)
π(m)

+KL(N (Y ; μ(1)
m , Σ(1)

m ),N (Y ; μ
(2)

π(m), Σ
(2)

π(m)))] , (6)

the following matching function π(m):

π(m) = arg min
n

{− log c(2)
n +

KL(N (Y ; μ(1)
m , Σ(1)

m ),N (Y ; μ(2)
n , Σ(2)

n ))}, (7)

re KL(N (Y ; μ
(1)
m , Σ

(1)
m ),N (Y ; μ

(2)
n , Σ

(2)
n )) is the KLD of

Gaussians [5].
The third method we studied is a so-called unscented trans-
ation (UT) based approximation method proposed also in [5].
approximate KLD of two GMMs is calculated as follows:

KL(p(Y |θ1), p(Y |θ2)) ≈

M(1)X
m=1

c
(1)
m

2D

2DX
t=1

log
p(Yt|θ1)

p(Yt|θ2)
, (8)

re Yt’s are 2D “sigma points” selected according to p(Y |θ1)
escribed in [5]. Other choices for generating “sigma points”
lso provided in [7], but we have not tried them out yet.
To compare the above three methods, experiments are con-
ed for four pairs of GMMs with settings of parameters shown
able 1, where D = 2, each GMM has two Gaussian compo-
s, MN1 and MN2 are the number of modes in two GMMs
ectively. As demonstrated in e.g., [9], the number of modes is
necessarily the same as the number of components in GMM.
above experimental design was inspired by the work in [9]
that each pair of GMMs has different “topography” proper-
Therefore an interesting comparison can be made, as shown

ig. 1, to understand the behaviors of the above three approxi-
KLD methods under the above different conditions.



Table 1. Settings of parameters of four pairs of GMMs.
Setting
No.

GMMs
“

c(i)
m , μ(i)

m , Σ(i)
m

”
Remarks

i = 1
m = 1

„
0.5,

»
3

3

–
,

»
1 0

0 1

–«

i = 1
m = 2

„
0.5,

»−2

−2

–
,

»
1 0

0 1

–«
MN1 = 2

i = 2
m = 1

„
β,

»
0

0

–
,

»
1 0

0 0.07

–« MN2 = 1, 2, 3

i = 2

1

m = 2

„
1 − β,

»
1

1

–
,

»
0.07 0

0 1

–«
for β ∈ [0.05, 0.5]

i = 1
m = 1

„
0.5,

»−2

4

–
,

»
1 0

0 1

–«

i = 1
m = 2

„
0.5,

»
2

4

–
,

»
1 0

0 1

–«
MN1 = 2

i = 2
m = 1

„
β,

»
2

0

–
,

»
1 0

0 1

–« Simulate β ��� 0

i = 2

2

m = 2

„
1 − β,

»−2

0

–
,

»
1 0

0 1

–«

i = 1
m = 1

„
0.5,

»−3

−3

–
,

»
1 0

0 1

–«

i = 1
m = 2

„
0.5,

»
4

4

–
,

»
1 0

0 1

–«
MN1 = 2

i = 2
m = 1

„
0.5,

»
0

0

–
,

»
2 0

0 σ2

–« MN2 = 3, 2, 1

i = 2

3

m = 2
0.5,

»
2

2

–
,

"
σ2 0

0 2

#! for σ2 ∈ [0.1, 1.5]

i = 1
m = 1

„
0.5,

»
2

6

–
,

»
1 0

0 1

–«

i = 1
m = 2

„
0.5,

»
4

4

–
,

»
1 0

0 1

–«
MN1 = 2

i = 2
m = 1

„
0.5,

»
0

0

–
,

»
2 0

0 σ2

–« MN2 = 3, 2, 1

i = 2

4

m = 2
0.5,

»
2

2

–
,

"
σ2 0

0 2

#! for σ2 ∈ [0.1, 1.5]

In Setting 1 as listed in Table 1, it is noted that the number of
modes in the second GMM changes from 1 to 3 when the mixture
weight varies from 0.05 to 0.5. In Settings 3 and 4, the number of
modes in the second GMM changes from 3 to 1 when the variance
σ2 varies from 0.1 to 1.5. The difference between Settings 3 and 4
is that the matching results are different when the matching based
approach is used. In Setting 3, each component in GMM θ1 is
matched to a different component in GMM θ2. However in Setting
4, both components in GMM θ1 are matched to the same compo-
nent in GMM θ2. From Fig. 1, we make the following observa-
tions: 1) In Settings 3 and 4, both matching-based and UT-based
KLD measures are a good approximation to the KLD calculated
by using the MC method; 2) In Setting 1, all the three approximate
KLDs follow the same trend when the mixture weight β changes;
3) In Setting 2, when the mixture weight is close to 0 or 1, the
UT-based method can give a more accurate approximation to the
KLD than the matching based method. As for the computational
complexity, among three methods, the matching-based method is
the most efficient, followed by the UT-based method. The MC
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(a) Setting 1
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(d) Setting 4

1. A comparison of three approximate KLD measures of
Ms under four experimental settings.

od is the most expensive one. According to the above simula-
results, we decided to use the matching-based KLD to serve as
ocal distortion score d(q

(1)
j , q

(2)
k ) required in our DTW-based

edure described in Section 2.

4. CONFUSABILITY ANALYSIS OF PUTONGHUA
LLABLES USING HMM DISSIMILARITY MEASURE

rder to verify the effectiveness of the proposed HMM dissimi-
y measure for identifying automatically the subsets of confus-
words in the vocabulary of a given ASR task, we take 410
nghua base syllables disregarding tones as our vocabulary.
basic speech units are triphones considering both the within-
ble and cross-syllable contextual dependencies. The context-
pendent (CI) phone set consists of 36 phones plus silence.

triphone is modeled by a three-emitting-state LR-CDHMM
out state skipping. Each state has 8 Gaussian mixture compo-
s with each component having a diagonal covariance matrix.
ecial three-state CDHMM is also used for silence modeling.
39-dimensional feature vector used in this study consists of
FCC’s and log-scaled energy normalized by the peak of the

vidual sentence, plus their first and second order derivatives.
ence-based cepstral mean subtraction is applied for acoustic
alization both in training and testing. A speaker independent,

sion-tree-based tied-state HMM system with 3001 tied states
trained by using HTK3.0 toolkit. The training data consists
53796 sentences (about 180 hours) from 216 male and 114
ale speakers extracted from four Putonghua corpora, namely

96, HKU99, 863 and MSRA.
Using the above trained models, we conduct an isolated syl-

recognition experiment by using 33021 utterances from 10
and 10 female speakers extracted from isolated syllable part

KU96 Putonghua corpus. An averaged syllable recognition
racy of 60.9% is achieved. At the same time, a syllable con-
n matrix SCMR is also obtained, with the (i, j)th element

R[i, j] being the percentage of the ith syllable mis-recognized
e jth syllable. From SCMR, a symmetric syllable dissimilar-



ity matrix SIMR can be defined with the (i, j)th element calcu-
lated as

SIMR[i, j] = − log[max(SCMR(i, j), SCMR(j, i))]. (9)

Using the DTW-based HMM dissimilarity measure, a model
based symmetric syllable dissimilarity matrix SIMH can be ob-
tained with the (i, j)th element calculated as

SIMH [i, j] = (DHMM (λi, λj) + DHMM (λj , λi))/2, (10)

where λi, λj are the LR-CDHMMs for the ith and jth syllables
respectively.

The following agglomerative hierarchical clustering procedure
is then used for identifying the subsets of confusable syllables:

1. begin: initialize threshold, c ← n, Di ← {syli}, where
syli is the ith syllable; i = 1, · · · , n; and n = 410 is the
total number of syllables in the vocabulary.

2. do: c ← c − 1; find the nearest clusters, say Di and Dj ,
with the smallest dissimilarity d(Di, Dj); merge Di and
Dj .

3. until: all d(Di, Dj) > threshold; i < j; i, j = 1, · · · , c.

4. return: c clusters.

In the above procedure, c is the number of clusters. The dissimi-
larity between a pair of syllable clusters is calculated as

d(Di, Dj) = min
{syli∈Di,sylj∈Dj}

SIM(syli, sylj), (11)

where SIM(syli, sylj) is the dissimilarity between the syllables
syli and sylj , which takes the value of the corresponding element
in SIMR or SIMH respectively.

Under the settings of threshold = 1 for SIMR-based clus-
tering and threshold = 10 for SIMH-based clustering, the final
numbers of clusters are 108 and 90 respectively. For each cluster
GR(i) obtained by the SIMR-based clustering, a corresponding
cluster GH(j) obtained by the SIMH-based clustering is selected
with the largest measure, CP (GR(i), GH(j)), defined as follows:

syllable number in both GR(i) and GH(j)

syllable number in GR(i)
. (12)

Some examples are illustrated in Table 2. The agreement between
pairs of clusters is very high. Among 108 pairs of clusters, 27 pairs
have CP = 1 and 48 pairs have a CP greater than 0.5.

5. CONCLUSION

In this paper, a new DTW-based distortion measure is proposed for
measuring the dissimilarity between pairs of LR-CDHMMs. Its
effectiveness has been confirmed in the above experiments. We’ve
also been using this new measure in other ASR applications. We
will report those studies elsewhere.
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