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Abstract 
Cepstral normalization has been popularly used as a powerful 
approach to produce robust features for speech recognition. 
Good examples of approaches in this family include the well 
known Cepstral Mean Subtraction (CMS) and Cepstral Mean 
and Variance Normalization (CMVN), in which either the first 
or both the first and the second moments of the Mel-frequency 
Cepstral Coefficients (MFCCs) are normalized. In this paper, an 
improved approach of Powered Cepstral Normalization (P-CN) 
is proposed to normalize the MFCC parameters in the r-th 
powered domain, where r > 1.0. The basic idea is that when the 
MFCC parameters are raised to the r-th power, the harmful parts 
of environmental disturbances may be more emphasized than 
the speech features which are relatively smooth. Therefore 
performing the normalization in the domain of the r-th power 
may be more helpful. But the value of r should not be too large 
because in that case the environmental disturbances may be 
exaggerated and further corrupt the speech features. This 
approach is computationally simple and efficient. Initial 
experimental results on AURORA 2.0 testing environment 
showed that significant improvements in recognition rates are 
consistently obtainable under all different noisy conditions. 
Index Terms: Robust speech recognition, cepstral 
normalization, cepstral mean and variance normalization. 

1. Introduction 
In real world speech recognition applications, robust features 
are highly desired in order to offer acceptable recognition 
performance under various noisy conditions. Mel-frequency 
cepstral coefficients (MFCCs) have been well accepted as a 
good choice for speech features with reasonable robustness, and 
many advanced techniques have been developed based on them. 
Normalizing the MFCC parameters has been a well-known 
approach to improve the robustness of the feature parameters. 
Cepstral Mean Subtraction (CMS) [1] and Cepstral Mean and 
Variance Normalization (CMVN) [2] have been two commonly 
used methods in this family, in which either the first or both the 
first and the second moments of MFCCs are normalized. A 
possible reason for this is that CMS effectively removes the DC 
component in cepstral domain, which usually includes the 
channel distortion, and avoids the low frequency noise to be 
further amplified. The variance normalization in CMVN, on the 
other hand, may reduce the mismatch in the statistics of the 
training and testing speech signals. It was also proposed that 
additional normalization of the third-order cepstral moment may 
achieve even better performance [3], because with such 
normalization the above mismatch may be further reduced. In 
addition, Histogram Equalization (HEQ) [4] and Higher Order 
Cepstral Moment Normalization (HOCMN) [5] are two other 
efficient methods recently proposed for cepstral normalization, 
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 have been shown to offer better performance than the 
vious ones. 
his paper, we proposed a new approach of Powered Cepstral 
malization (P-CN). The basic idea is that when the MFCC 

ameters are raised to the r-th power, where r > 1.0, the 
mful parts of environmental disturbances may be more 
hasized than the speech features which are relatively 
oth. Therefore performing the normalization in the domain 

he r-th power may be more helpful. But the value of r should 
 be too large because in that case the environmental 
urbances may be exaggerated and further corrupt the speech 
ures. Therefore a good value of r should be carefully chosen. 
he following, the proposed Powered Cepstral Normalization 
N) are first formulated in section 2. The experimental setup 

ed on AURORA 2.0 testing environment is described in 
tion 3, and some initial experimental results and discussions 
presented in section 4. Finally, we make concluding remarks 
ection 5. 

. Powered cepstral normalization (P-CN) 

. Cepstral normalization 
st cepstral normalization approaches try to normalize the 
CC parameters with respect to the moments, although some 
er approaches (such as histogram equalization (HEQ)) don’t. 
order to have a unified formulation, here we first briefly 
marize the well-known approaches of CMS and CMVN as 
 typical examples of cepstral normalization, and then 
elop the concept of the new approach of powered cepstral 
malization (P-CN) based on them. The N-th order moment of 
FCC parameter sequence X(n), where n is the time index, is 
expectation value of XN(n) [X(n)]N, usually approximated 

the time average over some interval, 
1

0

1( )] ( )
T

N N

k
n X k

T
.    (1) 

h the above notation, the well-known CMS processing is 
1[ ( )] ( ) ( ) [ ( )]CMSS X n X n X n E X n ,  (2) 

 the well-known CMVN processing is 
2[ ( )] ( ) ( ) [ ( )]CMVN CMS CMSVN X n X n X n E X n . (3) 

. Powered cepstral normalization (P-CN) 
e the only additional process for Powered Cepstral 
malization (P-CN) is to raise the MFCC parameters to the r-
power, but we need to retain the sign of the original 
ameters, and only raise the absolute value to the r-th power. 
n we can perform the same normalization techniques over 
powered MFCC parameters as usual, such as CMS or 

VN, and then transform them back to the original MFCC 
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domain. Let X(n) be the sequence for an original MFCC 
parameter and n be the time index as before, the transformation 
from X(n) to the r-th power domain, Y(n), is thus simply 

[ ( )] ( ) sgn[ ( )] ( ) rrP X n Y n X n X n .  (4) 

We can then perform the moment normalization procedure as 
usually on Y(n), for example, 

'( ) [ ( )]Y n CMS Y n  or '( ) [ ( )]Y n CMVN Y n   (5) 
for CMS and CMVN respectively. We then transform the new 
feature coefficients back to the original domain, 

1 1
'( ) [ '( )] sgn[ '( )] '( )r rX n P Y n Y n Y n ,  (6) 

where P1/r[ ] can be performed with equation (4) except here r
is replaced by 1/r. In this way we can perform Powered CMS 
(P-CMS) and Powered CMVN (P-CMVN) easily. Other cepstral 
normalization approaches, not limited to CMS and CMVN, can 
be similarly performed in the r-th power domain as well. 

2.3. Further discussions about powered cepstral 
normalization 
In the CMS and CMVN cases, the orders of the moments being 
normalized are always integers (1 or 2). However, when we 
consider to normalize the cepstral parameters raised to the r-th 
power as discussed above, where r is a positive real number, a 
very similar concept is to normalize the moments with orders 
being a non-integer, say any positive real number u. With such 
considerations, we can define two types of generalized moments 
as given below. In the first case, in evaluating the moments the 
sign of each parameter sample X(n) in equation (1) is retained 
first and only the absolute value of the sample X(k) is raised to a 
non-integer power order u. So equation (1) is generalized to 

1

1
0

1( ) sgn ( ) ( )  .
T uu

k
E X n X k abs X k

T
  (7) 

E1[Xu(n)] in the above is referred to as the generalized moment 
of the first type with order u here. In the second case, in 
evaluating the moments the sign of each parameter sample X(k)
in equation (1) is simply removed, 

1

2
0

1( ) ( )  .
T uu

k
E X n abs X k

T
   (8) 

E2[Xu(n)] in the above is referred to as the generalized moment 
of the second type with order u here. With the above definitions, 
E1[Xu(n)] in equation (7) reduces to equation (1) if u is an odd 
integer, and E2[Xu(n)] in equation (8) also reduces to equation (1) 
if u is an even integer. So the conventional definition of 
moments in equation (1) remains valid here for integer orders, 
in which case the two types in equations (7) and (8) converges 
into one in equation (1). 
When we have the definitions of the two types of generalized 
moments as defined above, it is interesting to discuss how they 
are related to the powered cepstral normalization discussed 
previously. Because the generalized moments of the first and 
the second types defined in equations (7) (8) can reduce to the 
conventional moments when the moment orders are odd and 
even integers respectively, these generalized moments can be 
used in the discussion. The general idea is summarized in Table 
1. In rows (1) and (2) of Table 1, it is easy to see that for the 
cepstral parameter sequence X(n) the generalized moment of the 
first type with order 1.0 has been normalized for both CMS and 
CMVN, and for CMVN the generalized moment of the second 
type with order 2.0 has also been normalized in addition. For P-
CMS mentioned in section 2.2 with order r as listed in row (3),  
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First Type Second Type
) CMS 1.0
) CMVN 1.0 2.0
) P-CMS r
) P-CMVN r 2r

neralized Cepstral
Normalization

Orders of Generalized Moments being Normalized

Table 1. Comparison for the orders of the two types of 
eneralized moments being normalized for different cepstral 

normalization techniques discussed here in this paper.

ally the generalized moment of the first type with order r
the parameter sequence X(n) has been normalized, since the 
ventional first moment in the domain of the r-th power 
responds to the generalized moment of the first type with 
er r in the domain of the original parameter sequence X(n).
refore P-CMS proposed here by raising the cepstral 
uence to the r-th power and performing CMS in the r-th
er domain can be considered as a simple approach to 

malize the generalized moment of the first type with order r
a parameter sequence. Similarly, for P-CMVN also 

tioned in section 2.2 with order r as in row (4), everything 
ains the same as P-CMS, except here the generalized 

ment of the second type with order 2r has been normalized 
ddition. 

3. Experimental setup 
 above approaches were evaluated by the AURORA 2.0 
ing environment with an English connected-digit string 
pus. Two training conditions (clean condition / multi-
dition) and three testing sets (sets A/B/C) were defined by 
RORA 2.0 [6]. In clean-condition training the acoustic 
dels are trained by clean speech only, while in multi-
dition training the models are trained by a corpus with both 
n and noisy speech. The testing set A included four different 

es of noise which were used in the multi-condition training 
way, babble, car and exhibition), while the testing set B 
uded another four different types of noise not used in the 
lti-condition training (restaurant, street, airport and train 
ion). The testing set C then included two noise types 
ectively from sets A and B (subway and street), plus 
itional convolutional noise. Six different SNR values, 
ging from 20dB to -5dB, were tested in each case. Whole-
d HMM models were used as specified by AURORA 2.0. 
h word had 16 states and 3 Gaussian mixtures per state. The 
ech features were extracted by the AURORA WI007 Front-
, which converted each signal frame into 13 cepstral 
fficients (MFCCs, C0~C12), on which all the normalization 
niques proposed above were performed. The first and 

ond derivatives were then computed from the normalized 
stral coefficients and used as well in the tests. The P-CN 
roaches proposed here were tested in a way, in which the 
stral normalization performed in the r-th power domain was 
ed on the statistics of progressively moving segments. In 
er words, the summation in equation (1) was performed over 
rogressively moving segment with length l+1, including the 
ceding l/2 frames and following l/2 frames where l = 140 in 
 experiments. 

. Development set and object function based on the 
an-condition training set of AURORA 2.0 
ddition to the testing environment as summarized above, we 
 defined a development set based on this testing  



Figure 1 Averaged recognition accuracy with different power 
order r for (a) P-CMS and for (b) P-CMVN 

Table 2. Recognition accuracies for experiments with CMS and 
the proposed P-CMS under clean-condition training.

environment, to be used for the selection of the various power 
orders r as mentioned in section 2.2. For this purpose, we 
divided all the 8440 utterances in the clean training corpus of 
AURORA 2.0 into two subsets, 7544 utterances for training and 
the rest 896 for testing. We added the eight types of noise used 
in AURORA 2.0 as summarized above on the second subset of 
896 utterances (now defined as the testing data of the 
development set, originally in the clean training corpus of 
AURORA 2.0) with SNR ranging from 20dB to -5dB 
respectively as the testing data for the development set. The first 
subset of 7544 utterances was then used for clean-condition 
training for the development set. So the testing conditions for 
the development set is very similar to those with clean-
condition training and testing sets A and B defined in AURORA 
2.0. The averaged word accuracy for all these forty conditions 
(eight types of noise and five SNR values) was then used as the 
object function for parameter selection. 

4. Preliminary experimental results 

4.1. Experiments for CMS and P-CMS 
All the preliminary experiments reported here in this paper were 
performed with the clean training condition only, because this 
represents a more serious mismatch situation and requires more 
robust speech features. The first set of experiments used CMS 
as the initial example, i.e., comparing the conventional CMS 
and the proposed P-CMS. The curve in Figure 1 (a) is the 
recognition accuracy for P-CMS for different values of r
averaged over all different SNRs from 20dB to 0dB and all the 
three testing sets A, B and C with all types of noise. The case r
= 1.0 corresponds to the conventional CMS. It can be found 
from Figure 1 (a) that the recognition accuracy for P-CMS 
actually monotonically increases with r when r is between 1.0 
and about 1.9. The performance then degrades slightly when r is 
beyond 1.9. Such results are quite reasonable as mentioned 
previously. Some good value of r may emphasize the 
disturbances more so that they can be better normalized, while 
too high value of r may exaggerate the disturbances and further 
corrupt the speech features. The curve in Figure 1 (a) verified 
the concept here. The recognition accuracy averaged separately 
for the three testing sets A, B, and C respectively for all types of 
noise in each set with all SNR values for P-CMS with the best 
case of r = 1.9 in Figure 1 (a) are listed in row (2) of Table 2, as 
compared to the results for corresponding cases for CMS (the 
point of r = 1.0 in Figure 1 (a)). The improvements are  
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ure 2 (a)Performance and (b) averaged distance measure d 
of P-CMS for several typical values of r for different SNR 
alues, averaged over all different types of noise in different 

testing sets, but separated for different SNR values.

sistent across all the sets, the most significant for sets A and 
over 30% error rate reduction), with the overall averaged 
roved from 68.08% to 77.54%. 

. Further analysis comparing CMS and P-CMS 
 then compared the performance for several typical values of 
 P-CMS averaged over all different types of noise but 

arated for different SNR values in Figure 2 (a). The first bar 
igure 2 (a) for each case is for r = 1.0, i.e., the case of 

ventional CMS. Several observations can be made here. 
t, the improvements obtained with the approaches proposed 

e for r > 1.0 were quite obvious and consistent across all 
R values. The improvements were especially significant for 
R being 5dB or 0dB. It can be found that the accuracy could 
improved from 47.36% for r = 1.0 to 70.02% for r = 2.0 at 
 of SNR and from 24.44% for r = 1.0 to 42.62% for r = 2.2 
dB of SNR. Second, the best values of r were actually SNR 
endent. It was roughly 1.2 for clean and 20dB cases, then 
eases as SNR decreases. For 0dB of SNR, r = 2.2 turned out 
e best in Figure 2 (a), but the best value may be beyond 2.2. 
 -5dB of SNR, the best value of r actually returned to 
ghly 2.0. Such results are reasonable. With stronger 
urbances, a higher power order r may produce a more 
ropriate domain where the emphasized disturbances can be 
perly normalized. When the disturbances are too strong, 
ever, such as -5dB of SNR, the disturbances may be too 

ch exaggerated for higher r and can’t be normalized well. 
 best value of 1.9 as obtained previously in Figure 1 (a) was 
 the result when averaging the accuracy for SNR values 
 20dB to 0dB. 

 effect of P-CMS on each individual feature vectors can be 
lyzed with averaged distance measure d defined as 

E
y x

x
     (9) 

re x  is the 13-dimensional vector of MFCC parameters for 
n speech but normalized by the conventional CMS (r = 1.0), 
y  is the corresponding noisy speech version processed by 

MS (with a specific power order r) and normalized by the 
iance of the clean speech feature parameters processed by P- 



Table 3. Recognition accuracis for experiments with CMVN and 
the proposed P-CMVN under clean-condition training.

CMS (with the same power order r). The various normalization 
processes performed on x  and y  as mentioned above were to 
establish a reasonable common base for distance evaluation. 
The results of the averaged distance measure d for different 
values of r for different SNR values are shown in Figure 2 (b). 
By comparing the averaged distance measure in Figure 2 (b) 
with the recognition accuracies in Figure 2 (a), very high 
correlation between the results in these two figures can be found, 
i.e., smaller distance in Figure 2 (b) implied the P-CMS-
processed (r > 1.0) noisy feature vectors were better matched to 
the clean speech feature vectors “individually” as compared to 
the conventional CMS (r = 1.0). The smaller distance in Figure 
2 (b) is almost directly related to higher recognition accuracy in 
Figure 2 (a). In figure 2 (b) for each SNR values, increasing the 
value of r from 1.0 in general reduced the averaged distance, 
although the distance may be increased if the value of r was too 
large. Smaller distance measures were obtained for higher SNR 
values. All these are in agreement with the accuracies in Figure 
2 (a) to a good extent. These results explained the effectiveness 
of the P-CMS approach proposed here. 

4.3. Experiments for CMVN and P-CMVN 
The experiments of P-CN with CMVN were similarly 
performed, and the results are in Figure 1 (b). Figure 1 (b) is in 
parallel with Figure 1 (a), in which the performance of P-
CMVN (with fixed value of r) averaged over all types of noise 
and all SNR values are plotted as functions of r ranging from 
1.0 up to 2.2. The results here are very similar to those in Figure 
1 (a), except here the best performance is obtained when r is 
about 1.6 for P-CMVN. 
In the formulation in section 2.2, we in general assume the same 
value of r is used for all the (13 or so) different MFCC 
parameters, but of course this is a simplified assumption. 
Apparently the best values of r may be different for different 
MFCC parameters. With the above concept, the best values of r
for each MFCC parameter can at least be approximated using a 
simple greedy algorithm, in which the value of r is adjusted step 
by step for each MFCC parameter with the development set and 
object function as defined in section 3.1 for optimization. The 
P-CN obtained in this way is referred to as Improved P-CN here.  
The results for CMVN (baseline), P-CMVN (with the best value 
of r = 1.6) and Improved P-CMVN (optimized with individual 
MFCC parameters) are respectively listed in rows (1), (2) and (3) 
of Table 3, each separately for sets A, B and C while averaged 
over all types of noise within the sets and all SNR values. 
Similar to Table 2, significant improvements can be found in 
rows (2) and (3) of Table 3 as compared to row (1). We further 
compared the performance of CMVN and Improved P-CMVN 
(rows (1) and (3) in Table 3) for different SNR values (averaged 
over all types of noise) in Figure 3 (a) and different types of 
noise (averaged over all SNR values) in Figure 3 (b) 
respectively, and we can find that Improved P-CMVN is 
consistently better than CMVN in all cases including higher 
SNR conditions. From Figure 3 (b), we can see the Improved P-
CMVN performs significantly better than the conventional  
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ure 3 Comparison of CMVN and Improved P-CMVN for (a) 
ferent SNR averaged over all types of noise and (b) different 

types of noise averaged over all SNR values. 

VN for both car noise (very stationary) in set A and train 
ion noise (very non-stationary) in set B with 20.39% and 
25% error rate reduction respectively, as two typical 
mples. 

5. Conclusions
his paper, we proposed a new approach for powered cepstral 
malization to produce robust features for speech recognition. 
erimental results with AURORA 2.0 testing environment 

ified that significant improvements are consistently 
ievable in all cases especially under highly mismatched 
ditions. 
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