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Abstract 
Cepstral normalization has been popularly used as a powerful 
approach to produce robust features for speech recognition. 
Good examples of approaches include the well known Cepstral 
Mean Subtraction (CMS) and Cepstral Mean and Variance 
Normalization (CMVN), in which either the first or both the 
first and the second moments of the Mel-frequency Cepstral 
Coefficients (MFCCs) are normalized [1, 2]. Such approaches 
were extended previously to Higher Order Cepstral Moment 
Normalization (HOCMN) for normalizing moments with orders 
much higher than two [3]. Here we further extend HOCMN to a 
more generalized form with the generalized moment with non-
integer orders defined in this paper. Extensive experimental 
results based on a newly defined development set for AURORA 
2.0 indicated that not only HOCMN for integer moment orders 
can perform significantly better than the well-known approach 
of Histogram Equalization (HEQ), but some further 
improvements can be consistently obtained for almost all SNR 
values with non-integer moment orders. The theoretical 
foundation behind the approaches proposed here which explains 
why HOCMN can perform well and how the statistical 
properties of the distributions of the MFCC parameters are 
adjusted during the normalization processes were also discussed. 
Index Terms: Robust speech recognition, cepstral 
normalization, N-th order moment. 

1. Introduction 
We start with the conventional cepstral moment normalization 
and introduce the notation to be used here. The N-th order 
moment of a MFCC parameter sequence X(n) is the expectation 
value of XN(n), a simplified notation for [X(n)]N to be used 
throughout this paper, where N is usually an integer and the 
expectation value is approximated by the time average over 
some interval, {k = 0, 1, 2, , T-1}, where k is the time 
index in the interval, 
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In such cases, the purpose of moment normalization of order N
is to have 
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if N is an odd integer, where the subscript [N] indicates that the 
sequence X[N](n) is the normalized version of X(n) whose N-th 
order moment has been normalized, and 

[ ] ( )N
N NE X n M      (3) 

if N is an even integer, where MN is the N-th moment of a 
Gaussian distribution with unit variance, N(0,1), obtained by the 
moment generating function. Here we assume for simplicity the 
reference distribution to be used in the normalization is 
Gaussian with unit variance, although other distribution can also 
be used, for example that obtained with some training corpus. 
With the above notation, the well-known CMS is 
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re E[X1(n)] can be obtained by equation (1) with N = 1, and 
well-known CMVN is 

2
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re X[L,N](n) is the normalized version of X(n) whose L-th and 
h moments have both been normalized as in equations (2) 
 (3), and so on. 
viously, we proposed an extension referred to as Higher 
er Cepstral Moment Normalization (HOCMN) which is 
eloped by extending the concept of CMS and CMVN to 
ment orders much higher than two [3]. We showed that the 
gnition accuracy was significantly improved if the 

malized even moment order was extended from 2 to 100 
g a carefully chosen scaling factor and the normalized odd 

ment order was extended from 1 to 3 or 5 using an iterative 
cedure [3]. Here in this paper we further extend HOCMN to 
ore generalized form with the generalized moment with non-
ger orders being normalized, and offer further analysis and 
ussions regarding the fundamental principles behind these 
roaches based on the statistical properties of the distributions 
he MFCC parameters. 
the following, the extended HOCMN and statistical 
ciples are first formulated in section 2. The experimental 
p based on AURORA 2.0 testing environment is described 
ection 3, and some experimental results and discussions are 
sented in section 4. Finally, we make concluding remarks in 
tion 5. 

2. Extension and further analysis of 
HOCMN 

. Generalized moments for a non-integer order u
he initial development of HOCMN [3], the values of N, L or 
orders of the moments being normalized are always taken as 
n and odd integers respectively. However, these orders do 
 have to be integers but can be any positive real number u.
h such considerations, we can further define two types of 
eralized moments as given below. In the first case, the sign 
ach parameter sample X(n) in equation (1) is retained first 
 only the absolute value of the sample X(k) is raised to a 
-integer power order u. So equation (1) is generalized to  
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Xu(n)] in equation (6) is referred to as the generalized 
ment of the first type with order u here. In the second case, 
valuating the moments the sign of each parameter sample 
) in equation (1) is simply removed, 
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Xu(n)] in equation (7) is referred to as the generalized 
ment of the second type with order u here. With the above 
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definitions, E1[Xu(n)] in equation (6) reduces to equation (1) if u
is an odd integer, and E2[Xu(n)] in equation (7) reduces to 
equation (1) if u is an even integer. So the conventional 
definition of moments in equation (1) remains valid here for 
integer orders, in which case the two types in equations (6) and 
(7) converge into one in equation (1). 

2.2. HOCMN with non-integer moment orders 
With the set of generalized moments defined in equations (6) 
and (7), the HOCMN proposed previously can be directly 
extended to non-integer moment orders. When the generalized 
moment of the second type E2[Xu(n)] in equation (7) is used, 
HOCMN for an even integer N using a carefully chosen scaling 
factor developed previously [3] can be directly applied for an 
arbitrary real number u, except N is replaced by u here. Similar 
to the even integer, a parameter sequence can be normalized 
with respect to the generalized moment of the second type 
E2[Xu(n)] for a single real number u in addition to CMS. 
Similarly, when the generalized moment of the first type 
E1[Xu(n)] in equation (6) is used, HOCMN for an odd number L
using an iterative procedure developed previously [3] can be 
directly applied for an arbitrary real number u, except L is 
replaced by u. Similar to the odd integer, a parameter sequence 
can be normalized with respect to the generalized moment of 
the first type E1[Xu(n)] for a single real number u in addition to 
CMS. These two types of normalization with respect to the two 
types of generalized moments can also be cascaded as 
developed previously [3] to produce a 

1 2[1, , ]u uHOCMN  process, 
where u1 and u2 are the two real number orders for the 
generalized moments of the first and the second types being 
normalized respectively. 

2.3. Fundamental principles behind HOCMN 
In statistics the “third moment about the mean”, normalized to 
the standard deviation, is referred to as the “skewness” of a 
distribution, or its departure from symmetry, 

3 3' X XS E X     (8) 

Where 
X

 and 
X

 are the mean and standard deviation of the 
random variable X whose distribution is being considered. A 
positive or negative value of S’ in equation (8) indicates the 
distribution is skewed to the right or left, and S’ is zero if the 
distribution is symmetric [4]. On the other hand, the “fourth 
moment about the mean”, normalized to the standard deviation, 
is referred to as the “kurtosis” of a distribution, or whether the 
distribution is “peaked” or “flat with tails of larger size”, 

4 4' 3X XK E X    (9) 

where 3 is the value for a standard normal distribution. A 
positive value of K’ in equation (9) indicates the distribution is 
flatter with tails of larger size than a standard normal 
distribution, and a negative value of K’ indicates it is “more 
peaked” with smaller tails than a standard normal distribution. 
In the definition of N-th order moment in equation (1), however, 
for simplicity the mean is not subtracted and the normalization 
with respect to standard deviation is not performed either as 
were done in equations (8) and (9). So the N-th order moment in 
equation (1) for N = 3 or 4 are simply “un-normalized third or 
fourth moments about the origin”. Although slightly different 
from those in equations (8) and (9), the statistical properties 
they carry are very similar. So they may be referred to as 
“modified skewness or kurtosis about the origin”, for N = 3 or 4 
respectively, 

3S E X , 4K E X .    (10) 
The above concept of “modified skewness or kurtosis” as 
defined in equation (10) can be further extended to other 
moment orders different from 3 and 4. For an odd integer L
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ich is not necessarily 3), the L-th moment can be considered 
he “generalized skewness of order L about the origin”, while 
an even integer N (which is not necessarily 4), the N-th

ment can be considered as the “generalized kurtosis of order 
bout the origin”, 
) ,  : an odd integerLE X L ,   (11) 

) ,  : an even integerN NE X N .   (12) 
h of S(L) and K(N) as defined above have very similar 
rpretation as the “skewness” and “kurtosis” in equations (8) 
 (9), except here the distance of the parameter values from 
origin are emphasized by different orders. 
 normalization to have a moment with odd integer order L
g zero in equation (2) is then to constrain the distribution to 
symmetric about the origin in the sense of “generalized 
wness of order L about the origin”. The normalization to 
e a moment with even integer order N being that of a 
dard normal distribution in equation (3) is to constrain the 
ribution to be “equally flat with tails of equal size” as 
pared to a standard normal distribution in the sense of the 

neralized kurtosis of order N about the origin”. The above 
rpretation can then be extended to the generalized moments 

non-integer orders discussed in section 2.1 as well. So the 
eralized moments of the first and second types in equation (6) 
 (7) have to do with the “generalized skewness” and 
neralized kurtosis” of the distribution, and so on. 

3. Experimental setup 
 above approaches were evaluated by the AURORA 2.0 
ing environment with an English connected-digit string 
pus. Two training conditions (clean condition / multi-
dition) and three testing sets (sets A/B/C) were defined by 
RORA 2.0 [5]. In clean-condition training the acoustic 
dels are trained by clean speech only, while in multi-
dition training the models are trained by a corpus with both 
n and noisy speech. The testing set A included four different 

es of noise which were used in the multi-condition training 
way, babble, car and exhibition), while the testing set B 
uded another four different types of noise not used in the 
lti-condition training (restaurant, street, airport and train 
ion). The testing set C then included two noise types 
ectively from sets A and B (subway and street), plus 
itional convolutional noise. Five different SNR values, 
ging from 20dB to 0dB, were tested in each case. Whole-
d HMM models were used as specified by AURORA 2.0. 
h word had 16 states and 3 Gaussian mixtures per state. The 
ech features were extracted by the AURORA WI007 Front-
, which converted each signal frame into 13 cepstral 
fficients (MFCCs, C0~C12), on which all the normalization 
niques proposed above were performed. The first and 

ond derivatives were then computed from the normalized 
stral coefficients and used as well in the tests. The 
lementation of the normalization approaches proposed here 
 based on the statistics of progressively moving segments. In 

er words, the summation in equation (1) was performed over 
rogressively moving segment with length l+1, including the 
ceding l/2 frames and following l/2 frames. 

. Development set and object function based on the 
an-condition training set of AURORA 2.0 
ddition to the testing environment as summarized above, we 
 defined a development set based on this testing 
ironment, to be used for the selection of the various moment 
ers L, N or u, u1, u2 as mentioned in section 2.1-2.2. For this 
pose, we divided all the 8440 utterances in the clean training 
pus of AURORA 2.0 into two subsets, 7544 utterances for 
ning and the rest 896 for testing. We added the eight types of 
se used in AURORA 2.0 as summarized above on the second 



subset of 896 utterances (now defined as the testing data of the 
development set, originally in the clean training corpus of 
AURORA 2.0) with SNR ranging from 20dB to -5dB 
respectively as the testing data for the development set. The first 
subset of 7544 utterances was then used for clean-condition 
training for the development set. So the testing conditions for 
the development set is very similar to those with clean-
condition training and testing sets A and B defined in AURORA 
2.0. The averaged word accuracy for all these forty conditions 
(eight types of noise and five SNR values) was then used as the 
object function for parameter selection. 

4. Preliminary experimental results 

4.1. HOCMN for integer orders with parameters 
selected by the development set 
With the tests as reported above, it is clear that the performance 
of HOCMN[1,L,N] depends on many parameters, the odd and even 
moment orders L and N, the best lengths of the processing 
segments to be used in estimating these moments of orders L
and N, referred to as lL and lN, also the number of iterations used 
for the odd order moment normalization. It is thus reasonable to 
use the development set and object function as defined in 
section 3 to find a sub-optimal set of these parameters. This 
makes sense for practical applications, because it is always 
possible to obtain a set of parameters in this way using a 
development set with conditions similar to the application task. 
Also in the initial experiments of HOCMN, we observed that in 
the AURORA 2.0 corpus, many utterances were actually very 
short for precise estimate of the odd order moments, but still 
acceptable for normalization of even order moments. Therefore 
in the following experiments HOCMN[1,L,N] with processing 
segment length lL and lN was performed in a slightly different 
way, in which the odd order moment normalization was not 
performed as long as the utterance length was less than lL, but 
the even order normalization was always performed regardless 
of the utterance length. 
With all the above, the best set of parameters obtained here with 
the help of the development set was found to be L = 3, N = 100, 
l3 = 120, l100 = 160, with complete results for the testing sets A, 
B and C and overall average listed in row (b) of Table 1. The 
overall average is 84.73%, representing a relative error rate 
reduction of 12.43% as compared to the baseline of 
HOCMN[1,3,100], l = 86 (row (a) of Table 1) proposed in [3]. 

4.2. Comparison of HOCMN with the well known 
Histogram Equalization (HEQ) 
Also shown in row (c) of Table 1 for comparison is the well 
known approach of Histogram Equalization (HEQ) [6, 7] (in the 
case of equalizing into a standard Gaussian), also processed 
with a moving segment with length l = 98 which was similarly 
selected with the development set and the object function. It can 
be found that the best case of HOCMN[1,3,100] (l3 = 120, l100 = 
160) in row (b) outperformed HEQ in row (c) in all testing sets, 
with overall averaged accuracy of 84.73% as compared to that 
of 83.38% with HEQ.
It is important to discuss why HOCMN can perform better than 
HEQ. HEQ essentially equalized (or normalized) the entire 
distribution of the MFCC parameters, so all moments of all 
orders are normalized to a good degree. As a result the 
parameters may be over-fitted to a given distribution and thus 
slightly different from their original nature. HOCMN, however, 
only normalized three moments of orders 1, 3 and 100, may 
therefore preserve more original nature of the parameters. On 
the other hand, here the normalization was performed only with 
short-term statistics for either HEQ or HOCMN. Equalizing the 
entire distribution based on only the limited quantity of data 
over a short period of time is inherently difficult. In the case of  
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Set A Set B Set C Avg.
OCMN [1,3,100] (l =86) [3] 81.24 83.95 82.46 82.57
OCMN [1,3,100] (l 3=120, l 100=160) 83.78 86.12 83.87 84.73 12.43%
EQ (l =98) 82.44 84.45 83.11 83.38

Relative
Error Rate
Reduction

lean Condition Training
Clean Condition Training

(HOCMN, N  = 100)

ble 1. Complete data for the best results obtained previously 
 in row (a), the best results obtained here in row (b), and for 

HEQ in row (c).

gure 1 Distributions of (a) original C0 ,(b) original C0 after 
processed by HOCMN[1,3,100] (l3 = 120, l100 = 160) and (c) 

original C0 after processed by HEQ  (l = 98).

alizing with respect to a standard Gaussian distribution, the 
ited quantity of data is not necessarily best approximated by 
andard Gaussian distribution. For HOCMN, however, it may 
more reasonable to try to normalize only the three moments 
rders 1, 3 and 100, rather than the entire distribution, with 
limited quantity of data. Although the limited quantity of 
 is also not adequate to estimate the few moments including 
100-th moment precisely, the normalization for the moment 
ven order 100 only needs to estimate a scaling factor which 
ends on the 100-th root of the 100-th moment [3]. Therefore, 
estimation error of this scaling factor can be significantly 

uced. All these are probably why HOCMN can perform 
er than HEQ. 
sider the distributions of parameters C0 shown in Figure 1 

for all utterances in the testing set with all types of noise but 
arately under three SNR values: clean, 15dB and 0dB. All 
e parameters were respectively normalized by the best cases 
OCMN[1,3,100] (l3 = 120, l100 = 160) and HEQ (l = 98) as 

resented by rows (b) (c) of Table 1, and respectively shown 
igure 1 (b) and (c). Comparing Figure 1 (b) with Figure 1 

 it can be found that with HOCMN the parameters were 
malized to have excellent symmetry about the origin in the 
se of “generalized skewness of order 1 and 3”, and excellent 
ness with tail size equal to a standard normal distribution in 
sense of “generalized kurtosis of order 100”, although the 
inal shapes of the distributions were more or less preserved. 
 those processed by HEQ in Figure 1 (c), on the other hand, 
distributions for clean, 15dB and 0dB were very close to 

h other because they were all equalized into a standard 
ssian. Such a “forced matched” condition is not necessarily 
best for the reasons mentioned above, because the 

racteristic nature of the original parameter distributions may 
meared out by the equalization process. 
 above difference between HOCMN and HEQ can also be 
erved with some averaged distance measure, 

E
y x

x
,     (13) 

re x  is the 13-dimensional vector of MFCC parameters for 



clean speech and y  the corresponding noisy speech version but 
processed by HEQ (l = 98) or by HOCMN[1,3,100] (l3 = 120, l100 = 
160) respectively, || || is the Euclidean distance, and the 
average E[ ] is performed over all utterances in the AURORA 
2.0 testing set, including all different types of noise but 
separated for different SNR values. So the distance measure d
here reflects how the normalized feature vectors are 
“individually” matched to their clean speech versions, as 
compared to Figure 1 which shows how the feature parameters 
are normalized “collectively”. 
The results of the distance measure d evaluated by equation (13) 
for feature vectors y  processed by HEQ and HOCMN[1,3,100] are 
listed in rows (1) and (2) of Table 2 respectively. It can be 
found that the averaged distance d for HOCMN-processed 
features is consistently smaller than that for HEQ-processed 
features across all SNR values. The “relative distance 
reduction” for HOCMN[1,3,100] as compared to HEQ is also listed 
in row (3) of the table. Also listed in rows (4) and (5) in the 
lower half of Table 2 are respectively the accuracies achieved 
by HEQ and by HOCMN[1,3,100], averaged over all different 
types of noise but separated for different SNR values, with the 
error rate reduction ratio achieved by HOCMN[1,3,100] as 
compared to HEQ listed in row (6) of the table. It can be found 
that not only higher accuracies were consistently obtained by 
HOCMN[1,3,100] for all SNR values and the error rate reduction 
were significant except for 0dB of SNR, but the error rate 
reduction in row (6) were in fact in parallel with the “relative 
distance reduction” in row (3) to a good extent, i.e., more 
significant error rate reduction or distance reduction for higher 
SNR, but minor difference for lower SNR. This verified that 
when processed by HOCMN the feature vectors y  were in fact 
better matched “individually” to its corresponding clean speech 
versions x  than HEQ-processed vectors, although the 
“complete distributions” of HEQ-processed feature vectors y
looked better matched to those of the corresponding clean 
speech versions x  (e.g. those in Figure 1 (b) vs. those in Figure 
1(c)).

4.3. HOCMN with non-integer moment orders 
As mentioned previously in sections 2.2, HOCMN can also be 
performed with generalized moments with non-integer orders. 
The previous work [3] indicated that the performance of 
HOCMN[1,L,N] for even moment order N was saturated with 
larger integer of N such as N = 100. So replacing N = 100 by a 
non-integer u2 cannot help. From the experiments described in 
section 4.1 leading to the best set of parameters HOCMN[1,3,100]
(l3 = 120, l100 = 160) in row (b) of Table 2, however, it seemed 
the odd moment order L = 3 was not necessarily the best, thus 
replacing it by a non-integer u1 to have 

1[1, ,100]uHOCMN  may help, 
though in that case the parameters such as the processing 
segment length 

1ul , l100 and number of iterations in normalizing 
the generalized moment of first type may all need to be adjusted 
as well. In addition, the orders of the moments being normalized 
can be different for the 13 MFCC parameters, which were 
assumed always the same for all the experiments reported above. 
All these were done with 

1[1, ,100]uHOCMN  here, with all 
parameters selected for each MFCC parameter based on the 
development set and the object function defined in section 3.1. 
The results averaged over all different types of noise but 
separated for different SNR values are listed as row (2) in Table 
3, as compared to the case in row (1) which is the same as the 
case in row (b) of Table 1, or the best results for HOCMN with 
the same integer moments for all MFCC parameters. It can be 
found from Table 3 that the improvements obtainable are very 
limited except for the 0dB and -5dB cases (57.21 vs. 56.07% 
and 25.72 vs. 23.71) respectively. Although the improvements  
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( ) ( )
( )

d HEQ d HOCMN
d HEQ

able 2. Comparison of distance measure d  and accuracies 
tained by HEQ and by HOCMN[1,3,100] respectively, together 

with distance reduction and error reduction ratios.

l l

u l
1[1, ,100]uHOCMN

1ul

Table 3. Performance of best cases of HOCMN when the 
ment orders being normalized can be integers or non-integer 

values and different for different MFCC parameters.

the non-integer orders are limited when averaged over many 
ditions as shown in Table 3, they may make the difference 
er specific conditions, for example for a specific type of 
se, which can be found by a development set describing such 
ditions.

5. Conclusions
his paper, we extended the previously proposed concept of 
CMN to generalized moments with non-integer orders. 
ensive experimental results based on a newly defined 
elopment set for AURORA 2.0 indicated that not only 
CMN for integer moment orders can perform significantly 
er than the well-known approach of Histogram Equalization 
Q), but some further improvements can be consistently 

ained for almost all SNR values with non-integer moment 
ers. The theoretical foundation behind the approaches 
posed here which explains why HOCMN can perform well 
 how the statistical properties of the distributions of the 
CC parameters are adjusted during the normalization 
cesses were also discussed. 

6. References 
S. Furui, “Cepstral Analysis Technique for Automatic 
Speaker Verification”, IEEE Trans. on ASSP, 1981. 
O. Viikki, K. Laurila, “Cepstral Domain Segmental Feature 
Vector Normalization for Noise Robust Speech 
Recognition”, Speech Communication, Vol. 25, pp. 133-
147, August 1998. 
Chang-wen. Hsu, Lin-shan Lee, “Higher Order Cepstral 
Moment Normalization (HOCMN) for Robust Speech 
Recognition”, ICASSP’04, 2004. 
David J. Krus, Visual Statistics, Aug. 2003. 
http://www.visualstatistics.net/index.htm  
H. G. Hirsch, D. Pearce, “The AURORA Experimental 
Framework for the Performance Evaluations of Speech 
Recognition Systems under Noisy Conditions”, ISCA 
ITRW ASR2000, Paris, September 2000. 
F. Hilger and H.Ney, “Quantile Based Histogram 
Equalization for Noise Robust Speech Recognition”, 
Proceedings of Eurospeech, 1135-1138, 2001. 
Á. de la Torre, J. C. Segura, C. Benítez, A. M. Peinado, 
and A. J. Rubio, “Non-linear Transformations of the 
Feature Space for Robust Speech Recognition”, 
ICASSP’02, 2002. 


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Chang-wen Hsu
	Also by Lin-shan Lee
	------------------------------

