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Abstract
An auto-segmentation based endpointing algorithm for robust
ASR is proposed. The algorithm consists of two successive steps:
(1) homogeneous segment partitioning and (2) segment clustering.
The first step, due to its self-segmentation nature, does not need a
noise model, and is applicable to different noises at various SNR’s.
The dynamic programming based segment partitioning, which can
generate more homogeneous segments than individual frames for
clustering, yields a more robust VAD mechanism. Experiments
are performed on the AURORA2 digit database by comparing the
new algorithm with the ETSI standard for DSR. Quantitative as-
sessment of the new algorithm is performed via different evalua-
tion criteria, including: ROC curves, speech/non-speech discrimi-
nation, and speech recognition performance.
Index Terms: speech recognition, endpointing, VAD, auto-
segmentation.

1. Introduction
Endpointing or voice activity detection (VAD) is a key component
in speech recognition systems and how to detect speech in a robust
way, especially in noise, is a challenging problem.

Speech recognition in adverse environments often demands a
noise reduction scheme working in combination with a good voice
activity detector. The non-speech detection algorithm is an impor-
tant and sensitive part of most of the existing single microphone
noise reduction schemes such as Wiener filtering (WF) or spec-
tral subtraction. On the other hand, frame dropping (FD) is a fre-
quently used technique in speech recognition to reduce the number
of insertion errors. Speech frames incorrectly labeled as silence
causes unrecoverable deletion errors, while silence frames incor-
rectly labeled as speech could increase the insertion errors.

In 2002, a new standard incorporating noise suppression meth-
ods has been approved by the European Telecommunication Stan-
dards Institute (ETSI) for feature extraction and distributed speech
recognition (DSR). The so-called advanced front-end (AFE) [1]
incorporates an energy-based VAD for estimating the noise spec-
trum in Wiener filtering speech enhancement (WF AFE VAD), and
a different VAD for nonspeech frame dropping (FD AFE VAD).
AFE VADs outperformed VADs in other standards like AMR2,
AMR1, and G.729, which is obtained by Ramı́rez et al [2].

A typical VAD decomposes the input speech signal into
frames and decision is made on each frame. They are generally
effective in clean conditions but the performance starts to degrade
at lower SNR levels. An algorithm trying to alleviate these draw-
backs exploiting longer-term information has been proposed in [2]
and yields better discrimination with sustained improvements in
speech/nonspeech hit rates.

In this paper we propose a new long-term information based
endpointing algorithm, where variable segment length is derived
first algorithmically, toward improving speech detection robust-
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in adverse environments and the performance of speech
gnition systems. The new algorithm is based on auto segmen-
n [3]. Its goal is to divide a time series into homogeneous
ks to minimize the segmentation cost via dynamic program-
g (DP) that is often employed in alignment and model-fitting
ence segmentation algorithms. A variety of signal process-
and related problems such as signal detection and characteri-
n, density estimation, cluster analysis, and classification can
iewed as the search for an optimal partition of data given on
e interval. In the proposed method, the segmentation score

tion is defined as a homogeneity criterion penalized by seg-
tation complexity. Due to its auto segmentation nature, this
does not need a noise model, and is applicable to different

es and signal-to-noise ratios (SNR’s). On the other hand, since
a DP based procedure, the algorithm provides a graceful per-
ance in finding segmentation boundaries. Then any long-term

rmation can be extracted from each segment and any frame-
d decision rules can be used to judge whether a segment be-
s to speech or background noise. In this paper, only a very
le clustering approach is used.

The algorithm is evaluated in the context of the AURORA2
rimental framework [4] and AFE softwares [5] [6]. The bene-
f this approach are assessed quantitatively by an performance

ysis in comparison with AFE VADs, in terms of receiver op-
ng characteristics (ROC) curves, speech/non-speech discrimi-
n, and recognition performance when the VAD is used for an

matic speech recognition system.

2. Homogeneous Frame Partitioning
a given time interval I = {t, t = 1, . . . , T} which contains T
es of speech signals and a predefined parameter L (1 ≤ L ≤
hich represents the total number of segments to be produced,
entation S(T, L) is defined as a set of L blocks

S(T, L) = {Sl, 1 ≤ l ≤ L} (1)

re each block is a set of frames defined by consecutive time
ces Nl = {nl−1 + 1, . . . , nl} as

Sl = {�xn, n ∈ Nl} (2)

fying the nonoverlapping and nonskipping conditions

l = I and Sl Sl′ = ∅ if l �= l′. Here �xn is the d-
ensional feature vector associated with frame n, and nl is the
frame of segment Sl. The segmentation score function, simi-
with Bayesian information criterion (BIC) [7], is defined as a

ogeneity criterion penalized by segmentation complexity: the
ber of parameters in segmentation S. The formulation is

FS(T, L) = HS(T, L) + PS(T, L)

=

L

l=1

Dl + λp#S(T, L) log(T ) (3)
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where HS(T, L) is the homogeneity criterion of segmentation
S(T, L) and PS(T, L) is the penalty item. Dl = D(nl−1 +1, nl)
is a measure function of homogeneity associated with segment l
positioned from frame nl−1 + 1 to nl. λp is the penalty weight.
#S(T, L) is the number of parameters in segmentation S(T, L).

In this paper, D(n1, n2) is a within-segment distortion which
is defined as

D(n1, n2) =

n2

n=n1

[�xn − �C(n1, n2)]
T [�xn − �C(n1, n2)] (4)

where
�C(n1, n2) =

1

n2 − n1 + 1

n2

n=n1

�xn (5)

is the centroid of the segment. Thus the number of parameters
in the segmentation S(T, L) is #S(T, L) = L × d. An optimal
segmentation S∗(T, L∗) can be obtained by minimizing FS(T, L)
in Equation (3) over all segment numbers and segment boundaries:

S∗(T, L∗) = arg min
L,|S|=L

FS(T, L) (6)

Since the segmentation complexity is independent on the positions
of segment boundaries when the number of segments is fixed, we
can separate the minimization into two successive procedures: first
minimize HS(T, L) over all S for each L and then find the mini-
mum value of FS(T, L) over all L.

The minimum of HS(T, L) can be found through a DP proce-
dure which can be implemented similar to the level building algo-
rithm [8][9], i.e., the lth level has l segments. So given an L, there
are total L levels in DP search. The algorithm derives the optimal
partition of the first n frames at level l, H∗(n, l), using previously
obtained optimal partitions, i.e., those of the first j frames at level
l − 1, H∗(j, l − 1). At each level we must consider all possible
ending locations j, l − 1 ≤ j < n of the next-to-last segment of
the optimal partition. For each putative j, the distortion function
H(n, l) is — by the principle of optimality — the distortion of the
optimal subpartition prior to j, H∗(j, l − 1), plus the distortion of
the last segment itself, D(j + 1, n). The former was stored at pre-
vious level, and the later is a simple evaluation of D. The desired
new optimal segmentation corresponds to the minimum over all j.

In implementation the auto segmentation to partition observa-
tion vectors into segments, a constrained DP algorithm is adopted.
The number of frames in produced segments is limited in the range
[na,nb]. The lower bound corresponds to the shortest duration that
a segment should dwell, and the upper bound is used for compu-
tational savings. Two boundary functions on the values of frame
index n for a given value of level l are defined as Ba(l) = nal and
Bb(l) = nbl. They are used to restrict the range of the optimal
segmentation of the first n frames at level l to fall within a rea-
sonable set of the (n, l) plane. And the putative ending locations
of the next-to-last segment of the optimal path, j, are bounded by
(n−nb) and (n−na). Due to the limitation of minimum length of
the segments, there should be at most �T/na� segments or levels
to be built. (The symbol �x� means the largest integer not greater
than x.) More precisely, define H∗(n, l) to be the value of the dis-
tortion of the optimal segmentation S∗(n, l) of the first n frames
at level l, for 1 ≤ n ≤ T . The DP algorithm shown in Fig. 1 finds
the optimal segmentation S∗(T, L∗).

3. Segment Clustering
In this section, we propose a simple way to cluster the partitioned
segments produced in last section into 2 classes, i.e., speech and
noise. The processing is performed at the segment level. First
the segment centroids of the whole sentence are sorted according
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ame Partitioning Algorithm

Start level (l = 1)

• Calculate search range

Ba(1) = na, Bb(1) = nb (7)

• Compute

H∗(n, l) =
D(1, n), Ba(1) ≤ n ≤ Bb(1)
∞, else

(8)

For l = 2, . . . , (L = �T/na�), do

• Calculate search range

Ba(l) = nal, Bb(l) = nbl (9)

• For n = Ba(l), . . . , Bb(l), do

– Compute

H∗(n, l) = min
j

{H∗(j, l−1)+D(j+1, n)}, (10)

for n − nb ≤ j ≤ n − na.

– The value of j where this minimum occurs is stored
as p(n, l).

Select

L∗ = arg min
l

[H∗(T, l) + λpld log(T )] (11)

the optimal number of segments.
Backtrack using p to identify the end locations of individ-

l blocks of the optimal segmentation S∗(T, L∗) in the follow-
way. Let nL∗ = T , nL∗−1 = p(nL∗ , L∗), nL∗−2 =

nL∗−1, L
∗ − 1), etc. Then the last block in S∗(T, L∗) con-

ns frames nL∗−1 + 1, . . . , nL∗ = T , the next-to-last block in
(T, L∗) contains frames nL∗−2 + 1, . . . , nL∗−1, and so on.
Compute centroid �Cl = �C(nl−1 + 1, nl) for each segment
= 1, . . . , L∗.

Figure 1: Frame partitioning algorithm.

factor of a sum of the mean values of time-domain log en-
and cross correlation corresponding to pitch in each segment.
time-domain log energies and cross correlation coefficients

ariance normalized at sentence level. Then another auto seg-
tation at level 2 is performed on the sorted segment centroids
nd the optimal boundary to separate speech segments from
e segments. Though the segmentation penalty can also be used
is step to determine whether speech or noise exists in the time
val, we set λp = 0 in our implementation for simplicity since
uppose there are both speech and noise in each sentence.

4. Experimental Results
ral experiments can be formed to evaluate the performance of
algorithms. The analysis is normally focused on the deter-

ation of misclassification errors at different SNR levels, and
influence of the VAD decision on speech processing systems.
experimental framework and the objective performance tests
ucted to evaluate the proposed algorithm are described in this

ion.

In this study, the AURORA2 database and recognizer [4] was
. Features used in auto segmentation were the time-domain
nergy, root mean square, cross correlation, and Mel-frequency
tral coefficients (MFCC’s). This kind of feature type is a com-
ise between small variances of start and end point estimate

rs, which was investigated in our preliminary research [10].
d hangovers, therefore, should be effective. Auto segmenta-
was applied in each 0.5 sec interval. Segment length was

ted to 0.03–0.25 sec. The segmentation complexity penalty
ht in Equation (3) was set to λp = 0.2;
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Figure 2: ROC curves.

The non-speech hit-rate (HR0) and the speech hit-rate (HR1)
were defined as the fraction of all actual pause or speech frames
that are correctly detected as pause or speech frames, respectively:

HR0 =
C(0|0)

Cref(0)
, HR1 =

C(1|1)

Cref(1)
(12)

where Cref(0) and Cref(1) are the counts of real non-speech and
speech frames in the whole database, respectively, while C(0|0)
and C(1|1) are the counts of non-speech and speech frames cor-
rectly classified. For the calculation of the false-alarm rate (FAR)
as well as the hit rate, the “real” speech frames and “real” speech
pauses were determined by aligning clean test data to a set of
HMM models trained on clean data from both training and test
sets in the database.

4.1. Receiver operating characteristic curves
We compare speech detection performance by means of the Re-
ceiver operating characteristic (ROC) curves that completely de-
scribes the VAD error rate.

HR0 and FAR0 (=100−HR1) were determined in each noise
condition for the proposed VAD. HR0 as a function of FAR0 for
different hangovers is shown in Fig. 2. The results are averaged
values over all noise types and SNR levels. The operating point
of the AFE VADs [1] are also included. In Fig. 2, each solid line
corresponds to one start point hangover, while each dotted line has
a same end point hangover. (Hangover is the appended time du-
ration to the time period in which voice activity is detected. It is
commonly used in voice activity detector to produce an extended
voice detection period.) Different colors represent different hang-
over values, i.e., color blue, green, red, cyan, and magenta repre-
sent hangovers of 0.2, 0.15, 0.1, 0.5, 0.0 sec, respectively. From
this figure, we can see that hangovers of 0.1 and 0.2 sec for start
and end points (marked as a red circle) is a proper choice, which
agrees with the mean and variance analysis in our previous work
[10]. Therefore, we chose it as our operating point for latter anal-
ysis and experiments. It can be derived from these plots that WF
AFE VAD yields high HR0 but also yields high FAR0. On the
other hand, FD AFE VAD has been planned to be conservative
since it is only used in the DSR standard for frame dropping. Thus,
it exhibits low HR0 working on an also low FAR0. Auto segmen-
tation based VAD yields a much lower FAR0 and a little bit higher
HR0 than WF AFE VAD. It also yields a much higher HR0 but
also a slightly higher FAR0 than FD AFE VAD.

4.2. Speech/non-speech discrimination analysis
Second, the proposed VAD was evaluated in terms of its ability to
discriminate between speech and background periods at different
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Figure 3: Speech/non-speech discrimination analysis.

levels. Detection performance as a function of the SNR was
ssed in terms of HR0 and HR1.
Fig. 3 provides the results of this analysis and compares the
osed VAD algorithm to standard AFE VADs in clean condi-

s and SNR levels ranging from 20 to 5 dBs. Results for the two
s defined in the AFE DSR standard for estimating the noise

trum in the Wiener filtering stage and non-speech frame drop-
are both provided. The WF AFE VAD yields a poor speech

ction performance with a fast decay of HR1 at low SNR val-
while the FD AFE VAD achieves a high HR1 but mediocre

lts for non-speech detection. The proposed VAD achieves a
r compromise. It behaves well in detecting non-speech as well

xhibits a mild degradation in detecting speech at low SNR’s in
ch detection.

Influence of the VAD on a speech recognition system
ough the discrimination analysis and the ROC curves are
ctive to evaluate the given algorithm, the influence of the

decision on the performance of different feature extraction
mes was studied. Recognition results for the auto segmenta-
based VAD replacing the AFE VADs were provided.
VAD is playing two important roles in speech recognition in
rse environments. In noise reduction, since noise parameters
as its spectrum are updated during non-speech periods, a good
algorithm is critical for an effective estimation of noise that

quired by speech enhancement systems. On the other hand,
speech frame dropping is strongly influenced by the perfor-
ce of the VAD in effectively reducing the number of insertion
rs caused by the noise but not leading to too many irrecov-
le deletion errors caused by speech misclassification errors.
s an effective VAD for robust speech recognition needs a com-

ise between speech and non-speech detection accuracy.
The reference front-end (baseline) is what is used in the ETSI
ORA project for DSR [5]. The AFE features are extracted by

ns of the ETSI software [6]. The recognizer, published with
URORA2 database [4], is based on the hidden Markov model

kit (HTK) software package [11]. We only used clean training
ur analysis.
In order to compare the proposed method to the AFE stan-
, the VADs of the full AFE standard [1] (including both the
e estimation VAD and frame dropping VAD) were replaced by
roposed VAD. Results of the HMM based VAD was also pro-
d as a reference. All results were averaged over the three test
of the AURORA2 recognition experiments. More clearly, the
riment structure is:

. incorporate frame dropping to the baseline system

. replace the WF VAD of the AFE standard and do not per-
form frame dropping

. replace the FD VAD of the full AFE standard

. replace both WF and FD VADs of the full AFE standard

ce that, particularly, for the last three AFE based experiments,



Table 1: Influence of VADs on frame dropping incorporated to the
baseline.

System baseline baseline + FD

VAD (FD) – ref AFE proposed

Clean 99.0 99.2 98.6 99.0
20 dB 94.1 97.4 96.0 97.3

15 dB 85.0 93.7 91.3 93.5

10 dB 65.5 81.5 78.4 82.1
5 dB 38.6 56.7 53.3 59.0

0 dB 17.1 30.4 26.9 30.0

-5 dB 8.5 15.1 12.6 12.0

Avg. (0-20 dB) 60.1 71.9 69.2 72.4

Table 2: Influence of VADs on noise suppression in AFE.
System AFE without FD

VAD (WF) ref AFE proposed
Clean 99.1 99.1 99.1

20 dB 98.0 98.0 98.0

15 dB 96.6 96.4 96.5

10 dB 92.5 92.3 92.5
5 dB 82.3 82.2 82.2

0 dB 58.2 58.0 57.9

-5 dB 27.5 26.9 27.2
Avg. (0-20 dB) 85.5 85.4 85.4

we have used the same configuration with the standard [1]. The
same feature extraction scheme was used for both training and
testing. If FD is utilized, only exact speech periods are kept and
consequently, all the frames classified by the VAD as non-speech
are discarded.

Table 1 to 4 exhibit all recognition results in the clean training.
Note that AFE standard uses different VADs for noise suppression
and frame dropping. Table 1 shows the word accuracies obtained
for the baseline and the modified baseline incorporating the VADs
under investigation for frame dropping. We can observe that a
10% word error rate reduction (from 30.8% to 27.6%) is achieved
by the proposed VAD in comparison with the FD AFE VAD. Ta-
ble 2 demonstrates the effectiveness of noise reduction scheme in
robust speech recognition. All VADs have achieved improvement
of more than 60% on the baseline shown in Table 1. Both the
proposed VAD and the WF AFE VAD have a similar performance
with the HMM based reference. Table 3 shows the recognition re-
sults of the full AFE standard and the modified standard via only
replacing the FD VAD by others. The word error rate was reduced
from 14.4% to 13.8% when the proposed VAD was used. Table
4 shows the experimental results of the full AFE standard and the
modified standard via replacing both WF and FD VADs by others.
Another absolute improvement of 0.1% was achieved by the auto
segmentation based VAD.

5. Conclusion
In this paper, we propose a robust endpoint detection algorithm
based on auto segmentation. Due to the self segmentation nature,
the approach does not need any noise models, and is applicable
to different noises and SNR’s. Since DP based procedure is used,
the algorithm provided a graceful performance in finding segmen-
tation boundaries. Though a simple segment clustering method
based on segment centroids was used in this paper, any long-term
information can be extracted from the segments and any frame-
based VAD decision rules can be used. The proposed algorithm
was evaluated on the test sets in the Aurora2 database. The pro-
posed VAD outperforms the AFE standard VADs when used for
WF, FD, and both of them. The best recognition performance is
obtained when the proposed auto segmentation based VAD is used.
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Table 3: Influence of VADs on frame dropping in AFE.
System full AFE

VADs (WF/FD) AFE/ref AFE/AFE AFE/proposed

Clean 99.2 98.8 99.2

20 dB 98.2 97.8 98.0
15 dB 96.8 96.5 96.7

10 dB 93.2 92.5 93.0

5 dB 83.4 82.3 83.3
0 dB 59.9 58.8 60.1

-5 dB 28.4 27.3 28.0

Avg. (0-20 dB) 86.3 85.6 86.2

e 4: Influence of VADs on both noise suppression and frame
ping in AFE.

System full AFE

VADs (WF/FD) ref/ref AFE/AFE proposed/proposed

Clean 99.3 98.8 99.1
20 dB 98.2 97.8 98.1

15 dB 96.8 96.5 96.8

10 dB 93.2 92.5 93.1
5 dB 83.5 82.3 83.3

0 dB 60.7 58.8 60.5

-5 dB 30.0 27.3 29.3

Avg. (0-20 dB) 86.5 85.6 86.3

reduction of the word error rate was 4.4% over AFE VADs.
lly, when comparing the word accuracies to the performance
e recognition system using the HMM-based reference VAD,
an see that the performance of the proposed algorithm is very
e to that of the HMM-based reference. In almost all test sets,
roposed VAD algorithm is observed to outperform AFE stan-
VADs.
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