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Abstract

An adaptive enhancement method is proposed to improve recog-
nition accuracy on the outputs of blind speech separation (BSS)
system based on adaptive decorrelation filtering (ADF) in diffuse
noise. A divide and conquer strategy is taken to deal with the
noise effects on both system adaptation and ADF outputs. First,
fast noise compensation (NC) is performed for filter adaptation,
forcing ADF to focus on the task of separation; then, output noises
are reduced by conventional speech enhancement, such as spectral
subtraction or subspace methods. To make stationary-noise reduc-
tion techniques fit for output noises with time-varying properties
caused by ADF adaptations, a fast adaptive procedure is developed
to map known stationary input noise statistics to output. Separa-
tion and recognition experiments were conducted for both real and
simulated diffuse noises, based on TIMIT speech data and impulse
response data from a room with reverberation time T60 = 0.3sec.
The proposed techniques significantly improved phone recognition
accuracy of ADF results.
Index Terms: speech enhancement, blind speech source separa-
tion, diffuse noise.

1. Introduction
Combating the adverse circumstances brought by speaker interfer-
ences and environmental noises have been challenging tasks for
decades in hands-free automatic speech recognition (ASR) and
speech communication. A variety of blind source separation (BSS)
and independent component analysis (ICA) [1] algorithms have
been proposed for the separation of interfering speech. For the
reduction of noise effects, a vast number of speech enhancement
algorithms already exist.

For practical speech applications of BSS methods in noise, the
difficulties are two folds: 1) the working conditions of BSS algo-
rithms may be affected by the presence of noise, resulting in de-
graded separation performances; 2) a BSS algorithm itself, aiming
mainly at source separation, is limited in ability to suppress dif-
fuse noise. For the first problem, the general approach to improve
separation performance in noisy BSS is doing ”bias removal” [1].
How the separation performances are affected by noises depends
on specific algorithms, and some noise compensation (NC) algo-
rithms, e.g., [2] and [3], were proposed for corresponding sepa-
ration models. For the second problem of output noise suppres-
sion, the mechanism similarities between BSS and adaptive null
beamformer were established in [4] and [5]. According to [6],
these ”spatial inverse” type of approaches are only suitable for di-
rectional interferences, not for omni-directional ambient noises.
Therefore, efforts should also be devoted to the reduction of out-
put noise after separation. However, conventional speech enhance-
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t algorithms for stationary noises cannot be applied directly.
is because the adaptation of separation parameters makes the

ut noise properties time varying. Such variation becomes sev-
when the mixing acoustic paths changes, for example, when
ker moves.
In previous studies [7, 8], we significantly improved conver-
e rate and separation performance for the adaptive decorre-
n filtering (ADF) [9] separation model in noise-free speech
ication, and algorithms of a fast noise compensation (NC)
fast ADF (FADF) adaption were developed in [3] to improve
ch separation performances in diffuse noises. However, as in-
ted by the above analysis, it is difficult for ADF to remove
the output noise and the adaptation bias together, all by it-
Therefore, we propose a divide and conquer strategy for ap-
tion of ADF in noise, treating problems of adaptation com-
ation and speech enhancement separately. One potential so-
n is to remove the noise from speech inputs, such as the sub-
e processing [10] performed prior to ADF separation; but such
ise reduction can not improve the condition for subsequent
ce separation, due to the distortions introduced by speech
ncement pre-processing. In this paper we propose a post-
essing adaptive enhancement technique. First, the effective
k-wise NC-FADF [3] algorithm is applied to perform speech
ration. Then, as separation filters change over time, output
e properties are tracked by a fast adaptive mapping procedure.
lly, the adaptively estimated output noise statistics are used for
ch enhancement. Speech separation and phone recognition ex-
ments were conducted to evaluate the proposed separation and
ncement techniques.

2. ADF model and noise compensation
Noisy ADF separation model

following notations are used in our discussions: vector vari-
s are in bold lower case, matrices are in bold upper case, su-
cript T is for transposition, I is identity matrix, E{} is for
ctation, and * for convolution, N is filter length and block
th, m is block index. Speech and noise signal vectors contain
onsecutive samples up to current time t; their (2N − 1)-point
terparts are marked with tilde. The cross-correlation vector
een a scalar a and a vector b is denoted as rab = E{ab},

the correlation matrix formed by vectors a and b is defined as
= E{abT }.

Figure 1 shows the ADF noisy speech separation model with
rs, gij = [gij(0), ..., gij(N − 1)]T , i, j = 1, 2, i �= j. By
ulating the system parameters into 2N×(4N−2) filter matrix

G =
[IN 0N×(N−1)] −G12

−G21 [IN 0N×(N−1)]
, (1)
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Figure 1: Noisy ADF separation system

the ADF system I/O relations [11] can be described as

vn = G(ỹ + ñ), (2)

where ỹ = [ỹT
1 (t), ỹT

2 (t)]T and ñ = [ñT
1 (t), ñT

2 (t)]T are (4N −
2) × 1 vectors of clean speech mixture and noise, respectively,
with ỹi = [yi(t), . . . , yi(t− 2N +2)]T , ñi = [ni(t), . . . , ni(t−
2N + 2)]T ,i = 1, 2. The k-th row of the N×(2N − 1) Toeplitz
matrix Gij is [01×(k−1),g

T
ij ,01×(N−k)], k = 1, ..., N .

2.2. ADF adaptation and output noise components

The basic ADF adaptation given in [9] for clean mixtures is

gij(t + 1) = gij(t) + μij(t)vi(t)vj(t), (3)

where μij(t) is the step size. It was also derived by minimizing
the cross-correlation objective functions Jij = 1

2
rT

vivj
rvivj

[11]
under some approximate assumptions. From (2), the noisy out-
put correlation matrix contains speech-only and noise-only com-
ponents, i.e., Rvnvn =Rvv + Rηη , where the clean speech v =
[vT

1 (t),vT
2 (t)]T and the noise component η = [ηT

1 (t), ηT
2 (t)]T ,

and η satisfies the I/O relations of correlation vectors

rηiηj
= rninj

− Gjirniñi
− Rnjnj

gij + GjiRñinj
gij , (4)

rηiηi
= rnini

− Gijrniñj
−Rninj

gij + GijRñjnj
gij . (5)

It can be seen that as filters gij evolve, the noise properties at ADF
output vary. The cross-correlation term (4) causes a bias in filter
adaptation and it should be compensated. The auto-correlation (5)
represents ADF output noise statistics and it needs to be removed
to enhance the separated speech.

2.3. Noise compensated fast ADF

The compensation problem is treated first. The time varying noise
bias of (4) can be subtracted from the noisy objective function
Jnij

= 1
2
rT

vni
vnj

rvni
vnj

, leading to noise compensated adapta-
tion. We use the block-wise NC-FADF derived in [3]. Let the start
time for the m-th block be tm, the update of filters from current
block (m-th) to the next block ((m + 1)-th) is given as

g
m+1
ij = g

m
ij + μm

ij N(r̂m
vni

vnj
− r̂

m
ηiηj

), (6)

r̂
m
vni

vnj
=

1

N

N−1

k=0

vni
(tm + k)vnj

(tm + k), (7)

r̂
m
ηiηj

= r̂ninj
− a

m
ij − b

m
ij + c

m
ij , (8)

where both (7) and (8) are implemented with FFT-based fast al-
gorithms [12]. The computations of the output bias terms in
(8), am

ij = Gm
ji r̂niñi

, bm
ij = R̂njnj

gm
ij , cm

ij = Gm
jid

m
ij , and

dm
ij = R̂ñinj

gm
ij , have corresponding convolution representa-

tions. Their vector components are listed below:
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am
ij (k) = gm

ji (n) ∗ ξa
ij(n)|n=2N−2−k ,

ξa
ij(n) = r̂niñi

(2N − 2 − n),

cm
ij (k) = gm

ji (n) ∗ ξc
ij(n)|n=2N−2−k ,

ξc
ij(n) = dm

ij (2N − 2 − n).

bm
ij (k) = gm

ij (n) ∗ ξb
ij(n)|n=k+N−1

ξb
ij(n) = r̂nj ñj

(|n − N + 1|),

dm
ij (k) = gm

ij (n) ∗ ξd
ij(n)|n=k+N−1

ξd
ij(n) = r̂niñj

(N − 1 − n).

The block step-size μm
ij in (6) is given by

μm
ij = μm · σ̂2

vj
(m)/σ̂2

av(m), (9)

μm = γ/ N(σ2
yn1

(m) + σ2
yn2

(m)) , (10)

σ̂2
av(m) =

1

2
σ̂2

v1
(m) + σ̂2

v2
(m) , (11)

re the constant gain factor γ (0 < γ < 1) controls conver-
e speed, σ2

yni
(m)’s are short-term input powers, σ̂2

av(m) is
stimated average output speech power, and the output speech
er σ̂2

vj
(m) is estimated by

j
(m) ≈ v

T
nj

vnj
/N − r̂nj

(0)+2gm
ji

T
r̂njni

−g
m
ji

T
b

m
ji . (12)

The block-wise computation of ADF outputs are implemented
overlap-add based fast filtering [12]. The algorithm is re-

d to as FADF if NC-FADF omits the compensation term r̂m
ηiηj

) and keeps the first term in R.H.S. of (12) only. For more de-
of FFT-based computation of r̂m

vni
vnj

, r̂m
ηiηj

, and step-size
please refer to [3].

Adaptive enhancement of separated speech
Tracking of ADF Output Noise Auto-Correlations

ough NC-FADF improves the separation performance of ADF,
eparation results vni

’s are still contaminated by noise. Addi-
al speech enhancement processing should be integrated with

at each output to reduce noise. Usually, speech enhancement
rithms require the knowledge of properties of the noise that
s to be removed. For online separation applications, we need
ack the time-varying output noise properties as filters evolve

block to block. The idea is based on fast computation of
Similar to the derivations of (8), we obtain auto-correlation of

output noise for the m-th block

r̂
m
ηiηi

= r̂nini
− a

m
ii − b

m
ii + c

m
ii , (13)

re am
ii = Gm

ij r̂ni ñj
, bm

ii = R̂ninj
gm

ij , cm
ii = Gm

ijd
m
ii , and

= R̂ñjnj
gm

ij . Since input noise is stationary, its auto and
s correlations can be assumed to be known, or measured a
ri. The fast mappings from input correlations to output, de-
ing only on current system parameters gm

ij ’s and Gm
ji ’s, are

lemented as the fast convolutions of the following signal se-
ces:

am
ii (k) = gm

ij (n) ∗ ξa
ii(n)|n=2N−2−k , (14)

ξa
ii(n) = r̂niñj

(2N − 2 − n), (15)



cm
ii (k) = gm

ij (n) ∗ ξc
ii(n)|n=2N−2−k , (16)

ξc
ii(n) = dm

ij (2N − 2 − n), (17)

bm
ii (k) = gm

ij (n) ∗ ξb
ii(n)|n=k+N−1, (18)

ξb
ii(n) = r̂niñj

(N − 1 − n), (19)

dm
ii (k) = gm

ij (n) ∗ ξd
ii(n)|n=k+N−1, (20)

ξd
ii(n) = r̂nj ñj

(|N − 1 − n|). (21)

3.2. Enhancement of separated speech

Utilizing the adaptively estimated noise statistics r̂m
ηiηi

, a lot of
speech enhancement algorithms can be considered for post en-
hancing ADF outputs. Two representative examples of single
channel speech enhancement methods, spectral subtraction and
generalized subspace method are compared in the current work
for the reduction of ADF output noises in each block. The basic
spectral subtraction approach is to be tested for two reasons: 1) it
is simple to implement and suitable for fast algorithm; 2) it may, to
some extent, provide us with a performance lower-bound, among
speech enhancement algorithms with higher complexities.

3.2.1. Spectral subtraction

The spectral subtraction algorithm [13] is taken in the basic form.
For block m, the estimate of clean speech amplitude is given by

ˆV m
i (f)=

V m
ni

(f)
2
−E |Φm

i (f)|2
1

2

,if
E{|Φm

i (f)|}2

V m
ni

(f)
2 ≤ 1

0, otherwise,
(22)

and the phase of V̂i

m
(f) equals that of V m

ni
(f). The noise power

spectral density required in (22) at each block m is directly trans-
formed from the adaptive estimate of vector (13) as

E |Φm
i (f)|2 = F F T E φ

m
ηi

, (23)

where, φm
ηi

is the short-term correlation vector. According to the
definition in [13], for the signal vector of length N supported only
in m-th block,

φm
ηi

(n) = tm+N−1
t=tm

ηi(t)ηi(t − n)

= N · 1
N

tm+N−1
t=tm

ηi(t)ηi(t − n).

Therefore, the time summation vector φm
ηi

is related to the average
vector r̂m

ηiηi
by

E φ
m
ηi

= N r̂
m
ηiηi

. (24)

No further processing or modification is taken to suppress mu-
sical noise, because it is usually achieved at the cost of increased
residual noise and because we care more about machine recogni-
tion rather than human perception.

3.2.2. Generalized subspace appraoch

For subspace method, we choose the time domain constrained
(TDC) type of generalized subspace (GSub) approach proposed
by Hu and Loizou [14], because of its ability to handle colored
noise. TDC-GSub processing is applied to every block of ADF
outputs. This method requires the noise auto-correlation matrix
Rm

ηiηi
. It can be constructed by forming a symmetric Toeplitz

matrix from the output auto-correlation vector obtained in (13). In
fact, r̂m

ηiηi
constitutes the first column and the first row of Rm

ηiηi
.
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Figure 2: Noise cross power spectra.

ther type of information the TDC-GSub algorithm takes is the
-correlation matrix of noisy ADF output, Rm

vni
vni

, which is
ated from ADF outputs of the current block. The SNR thresh-
used for eigen-domain filtering are chosen to be the same as
4].

4. Simulation experiments and results

Experimental setup

ch sentences in TIMIT database were used as clean sources.
ch mixtures were generated by convolutively mixing sources

g real acoustic impulse responses measured in a room with
rberation time T[60]=0.3sec [15]. Two microphones (#13 and
were mounted in a circular microphone array of radius 15cm

e target speech had 40 sentences from 4 speakers (faks0, felc0,
b0, mreb0) approximately 2m away from the microphones.
Noise data included both cases of simulated and real recorded
se noises. For the simulated case, noise were designed to be
ch-shaped by the following procedure:

(t) = β1

P1

k=1

a
(1)
k n1(t − k) + (1 − β1)n2(t) + ε1(t), (25)

(t) = β2

P2

k=1

a
(2)
k n2(t − k) + (1 − β2)n1(t) + ε2(t), (26)

ere εi(t)’s are white Gaussian excitations, β1=0.65, β2=0.6,
2, P2=3, and a

(i)
k ’s are linear prediction coefficients (LPC) es-

ted from clean TIMIT data. Real diffuse noises were recorded
a pair of omnidirectional microphones placed 21cm apart on

nference table in the middle of a computer lab, where an air-
itioning and ventilation system and 8 desktop workstations
working simultaneously. With stationary assumption on the

t diffuse noise, we estimated its correlation properties from
-second segment of noise-only data preceding the 1st speech

ence. The estimates of cross power spectra for both types of
es are illustrated in Figure 2.
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Figure 3: Phone accuracies (simulated noise)

4.2. Speech enhanced ADF and phone recognition

Speech separation experiments were conducted to evaluate the pro-
posed method, using both NC-FADF and FADF, with and without
adaptive speech enhancements. In all cases, preemphasis (1-z−1)
was applied to mixtures to flatten the long-term spectrum of speech
for faster convergence [8]. Since SNR was altered by preempha-
sis differently for simulated (decreased by 3dB) and real diffuse
(increased by 12dB) noises, the range of initial SNR’s were cho-
sen differently for these two cases so that the target speech was in
the same SNR’s after preemphasis. Block-length was N = 400
and adaptation step-size was set to be γ = 0.01; FFT length was
1024. After adaptive online noise reduction, a stable deempha-
sis 1/(1 − 0.98z−1) was applied to the enhanced speech. Phone
recognition were performed for noisy mixture, noisy separated
speech, and enhanced separated speech. Phone accuracy results
in both noise cases are shown in Figures 3 and 4, respectively.

5. Conclusion
The proposed adaptive enhancement techniques significantly im-
proved the phone recognition accuracy of the ADF separation out-
puts. The combination of NC-FADF with TDC-GSub achieved
highest performance. At low SNR’s, the gains of phone accuracy
are mainly provided by speech enhancement; at high SNR’s, the
improvement of accuracy comes mainly from better noise com-
pensated speech separation.
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