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Abstract
Tone has a crucial role in Mandarin speech in distinguish-

ing ambiguous words. Most state-of-the-art Mandarin au-

tomatic speech recognition systems adopt embedded tone

modeling, where tonal acoustic units are used and F0 fea-

tures are appended to the spectral feature vector. In this

paper, we combine the embedded aproach (using improved

F0 smoothing) with explicit tone modeling in rescoring the

output lattices. Oracle experiments indicate 32% relative

improvement can be achieved by rescoring with perfect tone

information. Recognition experiments on Mandarin broad-

cast news show that, even with an accuracy of only 70%, the

explicit tone classifier offers complementary knowledge and

improves performance significantly. Through the combina-

tion of tone modeling techniques, the character error rate on

the CTV test set can be improved from 13.0% to 11.5%.

Index Terms: speech recognition, Mandarin, tone model-

ing.

1. Introduction
Quite different from English and other Western languages,

Mandarin Chinese is a tone language which benefits from

modeling of lexical tones to distinguish ambiguous words.

Many studies have been conducted on how to incorporate

tone information in continuous Chinese speech recognition.

There are two major approaches: embedded tone modeling

and explicit tone modeling [1]. In embedded tone model-

ing, tonal acoustic units are used and F0 features are ap-

pended to the spectral feature vector (MFCC/PLP) at each

frame [2, 3, 4, 5]. In contrast, with explicit tone model-

ing, tones are independently recognized in parallel to pho-

netic recognition and then combined in a post-processing

stage [1] or integrated back in a global search process [6].

Although embedded tone modeling is very successful in

most state-of-the-art Mandarin automatic speech recogni-

tion (ASR) systems, it does not exploit the supra-segmental

nature of tones. First, a tone spans much longer than a

phone and is synchronous with the syllable instead of the

phone. Second, a tone depends on the shape of the pitch

con

tive

are

not

imp

for

cast

tone

ded

alth

cura

tion

tion

Sec

rith

emb

and

rize

Tra
base

of H

(LD

was

TDT

the

data

(ev

Fea
with

the

fund

and

alle

smo

tive

the

1237

INTERSPEECH 2006 - ICSLP
oadcast News Speech Recognition

, Mari Ostendorf1 and Tan Lee3

ineering, Seattle, WA 98195 USA
, EEE Dept., Clear Water Bay, HK
ngineering, Shatin, New Territories, HK
iu@ust.hk, tanlee@ee.cuhk.edu.hk

tour of the syllable. The frame-level F0 and its deriva-

s may not be enough to capture this shape. Third, tones

very variable in length and the fixed delta window can

capture the shape well. In this paper, we first describe

roved smoothing and normalization of pitch features

embedded modeling in our baseline Mandarin broad-

news (BN) system. Then we propose to use explicit

models in lattice rescoring to complement the embed-

tone modeling approach. As shown in the experiments,

ough the explicit tone classifier has much lower tone ac-

cy than the recognizer, it can still improve the recogni-

performance as a complementary knowledge source.

The rest of the paper is organized as follows: In Sec-

2, we describe the baseline Mandarin BN system. In

tion 3, the improved smoothing and normalization algo-

m for pitch features is presented, with results using the

edded approach. In Section 4, explicit tone modeling

recognition results are discussed. Finally, we summa-

the key points and propose future work in Section 5.

2. Baseline Mandarin BN system
ining and Test Data: The acoustic models of our

line Mandarin BN system were trained on 28 hours

ub-4 data released by the Linguistic Data Consortium

C) with accurate transcriptions. The language model

trained using 121M words from three sources: Hub4,

[2,3,4], Gigaword(Xinhua) 2000-2004. The test set is

RT-04 evaluation set, which includes a total of 1 hour of

from CTV, RFA and NTDTV broadcast in April 2004

al04).

tures and Models: Standard 39-dim MFCC features

vocal tract length normalization are generated with

front-end of the SRI DECIPHER speech recognizer. The

amental frequency F0 is extracted with ESPS’s get f0
then passed to a lognormal tied mixture model [7] to

viate pitch halving and doubling problems. Then a

othing algorithm similar to [2] is applied and deriva-

s are computed. The 3-dim F0 features are appended to

spectral features, resulting in a feature vector of 42-dim.
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Finally the features are mean and variance normalized

per speaker. We have used a pronunciation dictionary

that includes consonants and tonal vowels, with a total

of 72 phones. There are only 4 tones in the phone set,

with tone 5 mapped to tone 3. The acoustic models are

maximum-likelihood-trained, within-word triphone mod-

els. Decision-tree state clustering was applied to cluster the

states into 2000 clusters, with 32 mixture components per

state. The language models are word-level bigram models.

Decoding Structure: The decoding lexicon consists of 49K

multi-character words. The test data eval04 was automat-

ically segmented into 565 utterances. The length of each

utterance is between 5 to 10 seconds. Speaker clustering

is applied to cluster the segments into acoustically similar

clusters. After first pass decoding, the top hypothesis is used

for 3-class MLLR adaptation. The adapted results are eval-

uated in terms of character error rate (CER).

3. Smoothing and Normalization of F0

Since pitch is present only in voiced segments, the F0 needs

to be interpolated in unvoiced regions to avoid variance

problems in recognition. In our baseline Mandarin BN sys-

tem mentioned in Section 2, the IBM-style smoothing algo-

rithm [2] has been applied. Recently we have changed the

F0 smoothing and normalization algorithm as follows:

1. Interpolate the F0 contour with piecewise cubic Her-

mite interpolating polynomial (PCHIP) [8].

2. Take the log of F0.

3. Moving window normalization (MWN).

4. 5-point moving average (MA) smoothing.

Compared with the general spline interpolation, the

PCHIP spline interpolation has no overshoots and less os-

cillation. In practice, we find the recognition performance

is better than with general spline or linear interpolation. The

MWN subtracts the moving average of a long-span window,

with a window size of 1-2 seconds. The purpose of MWN

is to normalize out phrase-level intonation effects, as de-

scribed in [3, 1]. The moving average smoothing reduces

the noise in F0 features. Figure 1 shows the original raw F0

and the final feature, together with the tonal syllable align-

ments. As we can see from the upper plot, the F0 level of

the second tone 1 (in ”gen1”) is much lower than the first

tone 1 (in ”zhong1”) due to the F0 declination over the ut-

terance. The processed F0 features alleviate this problem

through the MWN step.

The speech recognition performance for different F0

features is evaluated on eval04, as shown in Table 1.

The RFA and NTDTV shows are broadcasted outside main-

land China and have more mismatch with the training data.

Therefore, the performance on these two sources are sig-

nificantly worse than the CTV data. Overall, the new
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re 1: Raw F0 contour and the processed F0 features.
vertical dashed lines show the forced aligned tonal syl-
e boundaries.

othing and normalization algorithm improves the base-

IBM-style smoothing by 0.8% absolute, with 1.0% ab-

te improvement on CTV. This improved smoothing is

useful in explicit tone modeling.

ble 1: CER on eval04 using different F0 processing.

ature CTV RFA NTDTV Overall

FCC only 14.0 38.5 21.5 24.1

aseline IBM style F0 13.0 35.4 19.8 22.2

pline F0 12.9 35.0 19.7 22.0

pline+MWN+MA F0 12.0 35.2 18.8 21.4

4. Explicit Tone Modeling
embedded tone modeling, we have achieved signifi-

t improvement in recognition performance. The embed-

modeling uses frame-level F0 as tone features. How-

, the most important acoustic cue of lexical tones is

segment-level F0 contour. Therefore, we want to ex-

e whether we can further improve the ASR performance

xplicit segment-level tone modeling from rescoring the

output lattices of the embedded tone modeling. We

ose to rescore lattices instead of n-best lists because a

ce is a much richer representation of the search space.

Because only the CTV portion of the test data is from

same source as the training Hub4 data, the CTV set is

for evaluation of explicit tone modeling. The other two

rces, RFA and NTDTV are more conversational (thus



Figure 2: Aligning a lattice arc i to oracle tone alignments.

have more tonal variation) and not well matched to the train-

ing data, so we expect less benefit from the explicit tone

model trained on Hub4. In the following part of this sec-

tion, we first evaluate the oracle upperbound for explicit

tone modeling, then describe the tone classifier, and finally

outline the approach for integrating tone scores into lattice

rescoring with associated experiments.

4.1. Upperbound evaluation

An error analysis was performed on the CTV test set. Ta-

ble 2 shows the recognition accuracy of tones, base syl-

lables, tonal syllables and characters, computed from the

same decoding run. We find the character errors with cor-

rect syllable but wrong tone account for only 0.6% absolute

(BS vs. TS). This might lead to the conclusion that by using

perfect tone information, we can at most achieve 0.6% im-

provement. However, different tone decisions might change

the phonetic decision since the acoustic units are context-

dependent tonal phones.

Table 2: Accuracy of tones, base syllables (BS), tonal sylla-
bles (TS), and characters (Char) on the CTV test set.

Tone BS TS Char

Acc. (%) 90.7 89.6 89.0 88.0

To more objectively evaluate the upperbound for tone

modeling, we incorporate the perfect tone information in

lattice search. Forced alignment is performed against the

references to get the oracle tone alignments. For each char-

acter in the lattice, we get the oracle tone label according

to the center time of the character. As shown in Figure 2,

character Ci is aligned to oracle tone T o
j−1. If the tone Ti of

Ci is different from the oracle tone T o
j−1, the corresponding

arc is pruned in the lattice via applying a large penalty score.

Then we re-decode the lattice with the Viterbi algorithm.

The re-decoded top best hypothesis achieves 8.2% CER

compared to the baseline 12.0%. This indicates the upper-

bound for improvement is 3.8% absolute (or 32% relative)

if we have a perfect tone recognizer.

4.2. Tone classification

Figure 3 shows the averaged F0 contours of the four tones

from one show in Mandarin BN speech. Similar to the find-

ings in [6], the co-articulation of tones is significant, espe-
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Figure 3: F0 contour of four tones.

ly from the left context. Therefore, explicit tone classifi-

on is a very challenging problem. Various pattern recog-

n methods have been tried for Chinese tone recognition,

as decision trees, neural networks, Gaussian mixture

els and support vector machines [9, 10, 11, 12]. In this

y, we use a single-hidden-layer neural network to train

classifiers due to the fast training and straightforward

gration. The quicknet package from ICSI is used in

implementation.

The Mandarin syllable consists of two parts: initial

sonant part) and final (vowel part). The features we

for tone classification are the pitch contour and dura-

of either the final part or the whole syllable. The pitch

tour is processed as described for embedded acoustic

eling, finally sampled to a fixed number of points.

A context-independent 4-tone classifier is trained on all

s longer than 15 frames, since it is almost impossible

istinguish the very short tones due to co-articulation ef-

s. The tone classification results are shown in Table 3.

find that the tone classification accuracy improves sig-

antly by adding the F0 features in the initial part of

syllable. This is probably because these features con-

some information about the co-articulation of the tones.

er features such as the polynomial regression coeffi-

ts have also been tried, but no significant improvement

achieved.

We also train context-dependent tone models by classi-

g the left context into 6 categories: tone 1-4, silence,

noise. Features from the previous syllable are also con-

nated onto the feature vector. By using the context-

endent tone models, the 4-tone classification accuracy

be further improved by 1.8% absolute as shown in Ta-

3.

Integration of tone scores

above explicit tone modeling gives around 25% tone

r rate. However, from the error analysis in Table 2 we



Table 3: Four-tone classification accuracy results on CTV
data. CI denotes context-independent models. CD denotes
context-dependent models.

Feature Dim #of nodes Acc.

CI: final f0 + dur 4 35 70.6%

CI: syllable f0 + dur 7 40 74.4%

CD: syllable f0 + dur 14 100 76.2%

find the tone error rate of the recognizer is 9.3% on CTV

data. In this sense the recognizer is actually a much better

tone classifier since it utilizes more complex acoustic and

language model information. We propose to use the explicit

tone classifier as a complementary knowledge source in lat-

tice rescoring. In this initial work, we only use tone scores

from the simple context-independent tone models in the lat-

tice.

For each lattice arc i, which has tone Ti associated with

character Ci, the tone score is computed as:

ψi = wdi log p(Ti|fi) (1)

where w is the weight for the tone score, di is the number of

frames in Ti, and p(Ti|fi) is the posterior probability of Ti

given the tone features fi. For short tones, a uniform score

is used instead of the posterior probability.

A tone weight of smaller than 0.5 gives improved per-

formance. The best CER is 11.5%, achieved with w =
0.35. Compared with the embedded modeling, this 0.5%

absolute improvement is statistically significant at the level

p = 0.039 according to the matched pair sentence seg-

ment test. It shows that the inferior explicit tone classifier

provides complementary information for recognition and

improves the system performance significantly. However,

there is still a lot of room to improve compared with the

oracle bound.

5. Conclusions and Future Work

In this paper, we have described the recent progress on tone

modeling in Mandarin BN speech recognition. In embedded

tone modeling, better smoothing of F0 features led to 0.8%

improvement on eval04 and 1.0% on CTV shows. By

using the scores from explicit segment-level tone models in

lattice decoding, another 0.5% improvement was achieved

on CTV data.

Future work includes integrating context-dependent

tone modeling in lattice decoding. Tone model adaptation

will also be explored. We will also investigate different

techniques for combining the embedded and explicit tone

models.
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