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Abstract

This paper presents a novel method for identifying regions of
speech in the kinds of energetic and highly-variable noise present
in ‘personal audio’ collected by body-worn continuous recorders.
Motivated by psychoacoustic evidence that pitch is crucial in the
perception and organization of sound, we use a noise-robust pitch
detection algorithm to locate speech-like regions. To avoid false
alarms resulting from background noise with strong periodic com-
ponents (such as air-conditioning), we add a new channel selection
scheme to suppress frequency subbands where the autocorrelation
is more stationary than encountered in voiced speech. Quantita-
tive evaluation shows that these harmonic noises are effectively
removed by this compensation technique in the domain of auto-
correlogram, and that detection performance is significantly better
than existing algorithms for detecting the presence of speech in
real-world personal audio recordings.

Index Terms: voice activitity detection, pitch determination, noise
robustness, environmental audio.

1. Introduction
Personal audio archives – continuous recordings of an individual’s
everyday experiences – can easily be captured by a flash-memory
MP3 recorder worn on the body with low cost and high reliability
[1]. While the collection of large personal audio archives provide
a wide range of surely valuable information such as the daily lo-
cations and activities of the user, no tools currently exist to make
such recordings remotely worthwhile – since finding a particular
event of interest would require review of the entire raw recordings.

In our previous work we developed an automatic indexing
mechanism at a large time-frame scale (e.g. 60 s) to identify the
locations of a user based on the nonspeech background ambience
statistics [2]. However, it has become clear that the richest and
most informative content in these recordings is the speech, and
thus it is important to be able to distinguish which segments of
the sound contain speech via Voice Activity Detection (VAD). For
example, dividing into speech and nonspeech allows both purer
modeling of background ambience (for location recognition) and
more focused processing of speech (for speaker identification, or
for privacy protection by rendering detected speech unintelligible).

Most previous work on VAD has addressed the telephony do-
main, where standard approaches enhance a basic energy thresh-
old; there is little effort to distinguish between voice and other
energetic signals. Speech recognition systems designed to work
with broadcast audio must take a richer view and be prepared to
exclude sounds such as music and other effects that may nonethe-
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have significant energy. One approach is use a classifier based
he same representation used in the recognizer [3].

While these approaches are often quite effective in benign
stical environments, e.g. a conference room, they tend to be
accurate in real-world, complex acoustic environments. Fig-

1 (a) shows a typical example of personal audio we would like
e able to handle. There is no consistent energy level for the
ch, and the highly variable background noise will often be as
as or louder than target. Because of the significant noise back-
nd, features used for conventional acoustic classifiers (e.g.
Cepstra) represent a hopelessly entangled mixture of aspects
e speech and the background interference. As a consequence,
ss we can train a classifier on examples of speech in every
ible background noise we expect poor performance from any
entional classifier.

To detect regions of speech in this kind of high-noise, high-
ability sound, we draw inspiration from the particular sensitiv-
f listeners to pitch, and to its dynamics. The first few harmon-
f pseudoperiodic vowels have the greatest energy of any part
speech signal, and thus are the most likely to be detectible in

r signal-to-noise ratios (SNRs). Also, the redundancy of mul-
harmonics derived from a single underlying periodicity gives
to robust coding of the fundamental frequency for more ac-
te detection in noise. As a result, our approach is based on a
s of noise-robust Pitch Detection Algorithms (PDAs) that per-

nonlinear combination of periodicity information in different
tral regions to best exploit locally-favorable SNRs, and can
identify periodicity present across the entire spectrum even

n the evidence in any single frequency channel is weak [4].

However, to use such PDAs to detect speech implicitly as-
es that any periodicity present in the signal corresponds to
e. When the signal contains interference that is itself peri-
– such as the steady hum of an air-conditioning unit, which is

icularly common in some of our outdoor recordings – this ap-
ch to VAD raises many false alarms. In figure 1 (b), there are
ir number of obviously erroneous nonspeech pitches, as well
istortions of the voiced pitches, due to air-conditioning noise.
n multi-pitch trackers (like [5]) cannot separate such noise be-
e voiced pitches are often weaker and/or intertwined (or over-
ed) with non-voice, interfering pitch. Moreover, because these
es sometimes have higher spectral energy than speech, conven-
al spectral subtraction methods fail to estimate the correct local
e model for them and are thus unable to effectively eliminate

in the domain of spectral energy, as seen in figure 1 (c).

In the next section, we describe a new method to remove long-
stationary periodic noises in the domain of autocorrelogram
in figure 1 (d). Based on the fact that the autocorrelation func-
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(b) Pitch tracks with original input
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(c) Pitch tracks with spectral−subtracted input
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(d) Enhanced pitch tracks by our algorithm
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Figure 1: Example of noisy speech from a personal audio record-
ing. The pitch tracks in (b) and (c) are extracted by a noise-robust
PDA as described in the text; pane (d) shows the result of our
algorithm with the same input signal. The pitch of a stationary pe-
riodic air-conditioning noise appears as flat contours around lags
105 and 210 in (b), and tends to be more dominant around 4-6 s in
(c) due to the failure of a noise estimation of the spectral subtrac-
tion, but is clearly deleted by our method in (d). Shadowed regions
indicate manually-labeled voiced segments.

tion (ACF) of these noises has a more slowly-changing shape com-
pared to speech over long durations, subbands corrupted with such
noise can be excluded from the summary autocorrelation (SAC)
by estimating whether the current ACF and the local average ACF
are similar. Evaluation and conclusions are presented in section 3
and 4 respectively.

2. Algorithm
Our system is based on a noise-robust PDA [5] that estimates dom-
inant periodicities from an SAC formed by summing the normal-
ized short-time ACFs of multiple subbands (based on a perceptual
model filterbank, with 128 4th order IIR gammatone filters uni-
formly spaced on the ERB scale). Critically, ACFs are excluded
from the SAC if they appear to be dominated by aperiodic noise, so
the SAC describes the periodicities present only in relatively noise-
free portions of the spectrum, chosen frame by frame. Specifically,
the SAC is built from only those subbands whose normalized ACF
has a peak above 0.945, where a peak of 1.0 would corresponds to
a perfectly periodic signal, and added noise reduces this value (this
threshold was established empirically in [5]). Finally an HMM is
used to extract the most probable pitch track from the SAC.

As described below, our modification is to further exclude
channels in which similarity between the current ACF and its aver-
age over a longer time window exceeds a threshold automatically
adapted to differentiate between dynamic periodic signals such as
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Figure 2: Block diagram of our proposed system.

ed speech, and stationary periodic noises like air-conditioning.
mplified block diagram of our system is illustrated in figure 2.

Multichannel Autocorrelogram

le-channel (mono) input recordings are resampled to 16 kHz,
then passed through a bank of gammatone filters uniformly
ed on an ERB scale. We used the channels spanning 80 Hz
00 Hz to capture the strongest pitched-voice energy. Then, the
lope is calculated by half-wave rectifying these outputs.
The ACF ryy(c, n, τ) and its energy eyy(c, n, τ) for each sub-

envelope output y(c, n) at a given frequency channel c and
index n may be defined as:

ryy(c, n, τ) =

n+WX
i=n+1

y(c, i)y(c, i + τ) (1)

eyy(c, n, τ) =

vuut n+WX
i=n+1

y2(c, i)

n+WX
i=n+1

y2(c, i + τ) (2)

re W is an integration window size, and ryy(c, n, τ) and
c, n, τ) are calculated over 25 ms windows every 10 ms for
τ = 0 . . . 400 samples (i.e. up to 25 ms for a lowest pitch of

z). ryy(c, n, τ) has a large value when y(c, n) is similar to
n + τ), i.e. if y(c, n) has a period of P , then ryy(c, n, τ)
peaks at τ = lP where l is an integer. The normalized ACF
c, n, τ)/eyy(c, n, τ) always falls between 0 and 1 (for our
egative envelopes), and thus a value of 1 at nonzero lag im-

s perfect repetition of a signal periodic within the window. To
lify notation, variables c, n, and τ are henceforth dropped.

Autocorrelogram Compensation

us assume that noisy speech y consists of a clean voiced signal
d stationary periodic noise n i.e. y(c, n) = s(c, n) + n(c, n).
is case, the ACF given by:

ryy = rss + 2rsn + rnn (3)

large W , if we assume that n(c, n) is zero mean and uncorre-
with s(c, n), so rsn = 0 i.e. ryy = rss + rnn. Taking the

cted value of both sides gives:

E{ryy} = E{rss} + E{rnn} (4)

n an estimate of the autocorrelation of the noise r̂nn, we could
ve an estimate of the uncorrupt speech signal as:

r̂ss = ryy − r̂nn (5)

1. Linear compensation

oretically, the ACF of a stationary periodic noise rnn could
stimated during periods when the speech is inactive and then



subtracted (or cancelled) from the ACF of the current frame ryy

resulting in the ACF of the clean speech r̂ss. However, there is no
simple way to detect pure-noise segments in a highly noisy signal.
Instead, we introduce a new method based on our assumption, sup-
ported by observation, that rnn for the kinds of noise we are trying
to remove changes very little with time. Consequently, the long-
time average of the ACF ryy tends to be close to rnn. Thus, we
can attempt to estimate the autocorrelation of the less stationary
voice signal by, for each time frame and each channel, estimating
r̂nn as the average ACF over M adjacent frames avg{ryy}, and
then subtracting it from ryy:

r̂ss = max(0, ryy − avg{ryy}) (6)

where max() ensures that the estimated ACF cannot be negative.

Compared with the original SAC, the stationary periodic noise
is effectively suppressed in a linear-compensated SAC, as shown
in figure 3 (b), but at the cost of some speech information, partic-
ularly at lags below 100 samples. The basic assumption on this
linear compensation is that the expected (average) value of rss in
equation 4 is zero. However, since autocorrelations of bandlimited
signals will always be positive in the vicinity of zero lag, rss does
not have a zero-mean distribution, and avg{ryy} does not provide
an unbiased estimate of rnn for these lags. As a result, even with a
large averaging window (e.g. 10 s), our estimate of the noise ACF
is greater than the actual value of the distortion at these lags, and
thus some speech information is removed by the compensation.

2.2.2. Non-linear compensation

To avoid the noise over-estimation problems of linear compensa-
tion, for each time frame and each channel, we compare every ryy

to avg{ryy} by cosine similarity, and use this to make a hard deci-
sion to include or exclude that ACF from the SAC. If the similarity
is greater than a threshold θ1, the subband is considered noisy for
that frame, and is thus excluded from contributing to the SAC.

k = Simcos(ryy, avg{ryy}) (7)

r̂ss =

j
ryy if k ≤ θ1

0 otherwise
(8)

where Simcos() is the cosine similarity (dot product divided by
both magnitudes) between the two ACF vectors.

θ1 is automatically tuned based on voice pitch dynamics
and harmonic spacing. Changes in target pitch cause rss to be
smoothly varying along time, making ryy differ from avg{ryy}.
Channels containing clean speech will thus exhibit local-minima in
similarity k compared to their noise-dominated neighbors. Since
voiced speech spectra will have equidistant harmonics with noise
energy in-between [6], during speech segments, we may see clean
voiced ACFs with noisy ACFs between them. If speech is cor-
rupted by stationary, periodic noise, ACFs dominated by this noise
are likely to persist in some channels over long time frames. There-
fore, θ1 is chosen as the mean of a set of cosine similarity values of
entire channels over M frames. Decreasing the value of M makes
it easier to identify periodic noise with shorter duration (or some
variability), but risks making gross errors of mistaking speech with
small pitch variation as background noise. A value of M = 100
(e.g. 1 s window) is a good compromise between robustness and
the ability to catch short-duration stationary harmonic noises.

After excluding the frequency bands judged to be dominated
by periodic noise, the SAC is calculated based only on channels
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(c) Non-linear compensated SAC
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re 3: SACs for the input signal from figure 1 with and with-
compensation using the local-average ACF over a 1 s window.
ionary harmonic air-conditioning noise appears as a sequence
rong peaks at lags of 105, 210 and 315 samples in the origi-
SAC, but is clearly deleted in the non-linear compensated SAC
el (c)), which also preserves speech information lost in the lin-
compensated SAC of panel (b). The non-linear compensated
is the basis of the enhanced pitch tracks shown in figure 1 (d).

a strong peak in the normalized ACF that exceeds a second
shold θ2 (e.g. 0.945). θ2 is chosen by examining the statistics

sample utterances mixed with interference [5]. Thus, the se-
d normalized ACF Ryy for every frame and channel is given

Ryy =

j
r̂ss/eyy if r̂ss/eyy ≥ θ2

0 otherwise
(9)

Cross-channel Integration and HMM Pitch Tracking

n [5], the Ryys are integrated across frequency channels to ob-
an SAC. Finally, an HMM is used to extract continuous pitch
s. We define the pitch state as the union of two subspaces,

pitch or no pitch. In each frame, a hidden node represents the
f observed peaks. While the transition behavior with the same

h subspace is modeled by a Laplacian distribution, the tran-
n between different subspaces can be determined by training
n a constant probability of a zero pitch. The Viterbi algorithm
ed to find the most likely sequence of pitch states. We allow

probability of the no pitch state to vary according to the level
oise. Given a transition matrix estimated for relatively clean
ch, we calculate pitch tracks with multiple different values for

zero-pitch probability, set as the nth percentile of the SAC in
frame, and then determine the best percentile value by train-

We also used the complete set of HMM posterior probabilities
ss all thresholds as a feature vector for SVM classification (be-
.

3. Evaluation
5 min test set was collected by a belt-mounted recorder worn
ng an outdoor discussion with four people (in front of the cam-
library), and thus was highly contaminated by noises includ-
other people’s voices and air-conditioning noise. We manually
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annotated it into three categories: foreground speech (FS), back-
ground speech (BS) and nonspeech (NS). In our experiments, we
compared four discrimination tasks: FS versus BS+NS, FS+BS
versus NS, BS versus NS and FS versus NS.

The data set was divided into a 5 min training and a 10 min
testing set. For our experiments, we computed the pitch track
contour and the HMM posterior probabilities using every 5th per-
centile of the SAC at each frame as the zero-pitch probability. We
used these features as the basis for two voice detector systems: For
the first system, after choosing the best fixed zero-pitch threshold
on training set, we took the presence of a non-zero pitch track as
indicating speech. The second system detected speech with a 2-
way SVM classifier based on the 20-dimensional feature set of the
HMM posterior probabilities across all zero-pitch probability set-
tings.

As shown in figure 1, within speech regions labeled manually,
there are many unvoiced segments between prominent syllables
or words. Using pitch to detect the presence of voice cannot, of
course, directly recognize these unpitched speech segments, but
we smoothed the output of the pitch detector with a 1 s median fil-
ter to provide labels more directly comparable to the hand-labeled
ground-truth.

The overall performance on the testing data is presented in ta-
ble 1 in terms of the accuracy rate and d′ (a threshold-independent
measure, taken as the separation between two unit-variance Gaus-
sian distributions that would exhibit the same level of perfor-
mance). For comparison, we also used a baseline of guessing
all frames as a single class. The accuracy and d′ with the non-
linear ACF compensation are significantly better than those with-
out, which improves FS/BS+NS discrimination by about 10% ab-
solute, and BS/NS discrimination by about 20%. Thus, the pro-
posed algorithm is effective even for weak speech. The decision
based on nonzero pitch track was simpler and by almost every
measure (marginally) superior to the SVM classifier, and is thus
preferred on the basis of its lower computational cost.

4. Conclusions
In this paper, we have proposed a robust pitch detection algorithm
for identifying the presence of speech in the noisy, highly-variable
personal audio collected by body-worn continuous recorders. In
particular, we have introduced a new technique for estimating
and suppressing stationary periodic noises such as air-conditioning
machinery. The performance of our proposed algorithm is signif-
icantly better than existing pitch detection systems for the kinds
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1973
ata we are addressing. Subsequent informal experiments have
aled that the sustained notes of background music can also be
oved by this technique, which is a direction for further inves-
tion e.g. for applications involving the recognition of broad-
speech: Detected voice pitch can be used for harmonic filter-
to remove much of the nonspeech energy, to provide a drop-
placement ASR feature. The multipitch tracker may also be
ful to suppress weak background voices after deleting strong
onary harmonic noises; this aspect is also currently under in-
igation.

5. Acknowledgements
work is supported in part by the Microsoft Digital Memo-

(Memex) program, the National Science Foundation (NSF)
er Grant No. IIS-0238301, and the Defense Advanced Re-
ch Projects Agency (DARPA) under Contract No. HR0011-
-0023. Any opinions, findings and conclusions or recommen-

ons expressed in this material are those of the authors and do
necessarily reflect the views of the funders.

6. References
D. P. W. Ellis and K. Lee, “Minimal-impact audio-based per-
sonal archives,” in Proceedings of the 1st ACM Workshop on
Continuous Archival and Retrieval of Personal Experiences
(CARPE), New York, NY, October 2004.

D. P. W. Ellis and K. Lee, “Features for segmenting and
classifying long-duration recordings of “personal” audio,” in
Proc. ISCA Tutorial and Research Workshop on Statistical and
Perceptual Audio Processing SAPA-04, Jeju, Korea, October
2004.

G. Williams and D. P. W. Ellis, “Speech/music discrimination
based on posterior probability features,” in Proc. Eurospeech-
99, 1999.

D. P. W. Ellis, “The weft: A representation for periodic
sounds,” in Proc. IEEE Int. Conf. Acous., Speech, and Sig.
Proc., 1997, pp. II–1307–1310.

M. Wu, D.L. Wang, and G. J. Brown, “A multipitch tracking
algorithm for noisy speech,” IEEE Transactions on Speech
and Audio Processing, vol. 11, pp. 229–241, 2003.

C. Ris and S. Dupont, “Assessing local noise level estimation
methods: Application to noise robust ASR,” Speech Commu-
nication, vol. 34, no. 1–2, pp. 141–158, 2001.
Table 1: Voice detection performance. The accuracy rate is the proportion of voiced frames correctly detected, and d′ (threshold-
independent measure of class separation). The best value in each row is shown in bold. The best threshold for zero-pitch probability
was estimated as the 61st percentile of the SAC for the Binary Decision with Pitch Tracks system.

Binary Decision with Pitch Tracks SVM Classification with HMM Posterior
Guessing (Accuracy, d′) (Accuracy, d′)

(Accuracy) Without Non-linear With Non-linear Without Non-linear With Non-linear
AC Compensation AC Compensation AC Compensation AC Compensation

FS/BS+NS 51.7% 73.8%, 1.66 83.9%, 1.99 75.9%, 1.73 83.7%, 2.05
FS+BS/NS 68.0% 76.9%, 1.26 81.0%, 2.07 74.2%, 1.60 80.2%, 2.00

BS/NS 66.2% 57.8%, 0.48 75.7%, 1.24 59.3%, 0.63 71.9%, 1.17
FS/NS 61.8% 79.4%, 1.74 88.0%, 2.44 76.5%, 1.96 85.8%, 2.36
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