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Abstract
Irregular phonation serves an important communicative 
function. It can be a cue to linguistic contrasts, and often serves 
as a marker for word and utterance boundaries. Automatic 
methods for classification and detection of regions of irregular 
phonation can be used to improve analyses of occurrences of 
irregular phonation and support technologies such as speech 
recognition and synthesis. This study proposes a set of acoustic 
cues from both the temporal and frequency domains — 
fundamental frequency, normalized RMS amplitude, smoothed-
energy-difference amplitude and shift-difference amplitude— 
for separation of regions of regular and irregular phonation. 
Tokens from the TIMIT database are classified using support 
vector machines, trained on 114 different speakers and tested 
with 37 different speakers. Both genders are well represented in 
the data set and the tokens occur in various contexts within the 
utterance. In the test set, 292 of 320 irregular tokens 
(recognition rate of 91.25%), and 4105 of 4320 regular tokens 
(recognition rate of 95.02%) are correctly identified. [Work 
supported by NIH/NIDCD # DC02978.] 
Index Terms: irregular phonation, nonmodal phonation, speech 
recognition, acoustic analysis, speaker variation 

1. Introduction
Irregular phonation is used to convey both linguistic and non-
linguistic information, where the specific type of information 
associated with an occurrence of irregular phonation depends on 
the language and the context. Irregular phonation may serve as a 
cue to speech segmentation (for example, [1-4]), and is lexically 
contrastive in some languages (for example, [4]). Automatic 
methods for detection and analysis of regions of irregular 
phonation not only support studies of the communicative role of 
such phonation patterns (in terms of database annotation and 
acoustic analysis), but also aid the development of technologies 
for speech recognition and synthesis capable of processing the 
range of natural phonation variation. 

Additionally, irregular phonation can result from some 
voice disorders, and a reliable, accurate, and non-invasive 
automatic system for detection and monitoring of vocal fold 
abnormalities is one in a range of necessary tools for 
pathological speech assessment [5]. 

One approach to an automatic system for irregular 
phonation detection has been to expand a phone-based 
automatic speech recognition platform to include phones that 
are realized with irregular phonation [6]. Five acoustic cues 
derived from cepstral coefficients are used to train on three 
speakers and test on a fourth. The recognition rate for frames of 
irregular phonation is 67% with a false alarm rate of 7%. 
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Autocorrelation-based cues obtained from the residual 
al as derived from inverse-filtering with linear prediction 

fficients are used in [7] for speaker-dependent classification 
normal, aspirated, and creaky phonation. For frames 

racted from 404 utterance-final syllables for a single female 
aker, a decision-tree paradigm resulted in a deletion rate of 
7% and a substitution rate of 7.9% for irregular phonation, or 
cognition rate of 78.4%. 
In this paper, we propose a set of four acoustic cues, based 
oth the time-domain and the frequency-domain, which are 

igned to separate regions of regular phonation from regions 
irregular phonation in a speaker-independent and context-
ependent manner for a large number of speakers. The cues 
 used in an automatic classification scheme and a discussion 
he classification failures is provided. 

2. Irregular phonation 
rmal, voiced speech is characterized by quasi-regular 
ration of the vocal folds. Although the vocal folds oscillate 
ularly when variables such as transglottal pressure, vocal 
 tension, and vocal fold adduction are in particular ranges, 
gularities in vocal fold vibration are observed for certain 
binations of the values of the control variables. These 

gularities in vocal fold vibration are more pronounced than 
 small cycle-to-cycle variations associated with the quasi-
iodic quality of regular phonation. The terms “modal” and
riodic” are often used interchangeably with “regular”
nation. Similarly, “nonmodal” and “aperiodic” are often 
d to denote “irregular” phonation. However, nonmodal 
nation includes irregular, aperiodic phonation as well as 
e forms of regular, periodic phonation such as breathy 

ce. Regions with very low frequency, periodic glottal pulses 
 also not typical of the normal range of phonation for a given 
aker and are classified as irregular in this study, in spite of 
ng periodic. In this study, irregular phonation is defined as: 

“A region of phonation is an example of irregular 
phonation if the speech waveform displays either an 
unusual difference in time or amplitude over adjacent pitch 
periods that exceeds the small-scale jitter and shimmer 
differences, or an unusually wide-spacing of the glottal 
pulses compared to their spacing in the local environment, 
indicating an anomaly with respect to the usual, quasi-
periodic behavior of the vocal folds.” 

3. Data Set 
h regular and irregular tokens were extracted from a subset 
the TIMIT corpus produced by speakers from the dialect 
ions “Northern” (dr1) and “New England” (dr2). The speech 
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material is divided into training and testing subsets. The data set 
consists of utterances from 151 different speakers, with 114
different speakers in the train set and another 37 different 
speakers in the test set.

Irregular tokens were hand-labeled and extracted by
analyzing the waveform in both the temporal and frequency
domains to find regions which corresponded to the stated 
definition of irregular phonation. Tokens were confirmed by
listening. The set of regular phonation tokens consists of all the 
vowels in dialect regions 1 and 2 labeled as \iy\, \ey\, \ae\, \aa\, 
\aw\, \ay\, \ao\, \oy\, \ow\, \uw\, \ux\, \er\, and \axr\ which do not
contain an instance of irregular phonation.  Table 1 shows the 
breakdown of regular and irregular tokens according to gender. 
Tokens occur in various contexts within the utterance (i.e. 
phrase-final, utterance-final, phrase-initial, etc.). 

Table 1. Gender breakdown of the number of regular and 
irregular tokens.

Total Male Female
Regular 8055 5458 2597
Irregular 1279 735 544

4. Acoustic Cues 
A set of acoustic cues that can provide a rational basis for

separating regular and irregular phonation was chosen that 
consists of fundamental frequency (F0), normalized root-mean-
square (NRMS) amplitude, smoothed-energy-difference (SED) 
amplitude and shift-difference (SD) amplitude [8]. Table 2
summarizes the rationale behind choosing these cues, and 
highlights the expected range for the cue values for regular and
irregular tokens. 

Table 2: Brief cue descriptions with expected ranges for cue 
values shown in bold within parentheses.

Cue Regular tokens Irregular tokens 
F0 Quasi-periodic signal 

with F0 in the range of
~72 to 266 Hz (higher)

Aperiodic signal either
lacking an F0 or with an
unusually low F0 (lower)

NRMS Mid-range NRMS due 
to regular spacing of
glottal pulses (higher)

Low NRMS from irregular 
and wide spacing of glottal 
pulses (lower)

SED Lack of rapid energy
transitions (lower)

Rapid energy transitions due
to widely spaced glottal
pulses (higher)

SD Repeatable waveform
structure (lower)

Lack of repeatable
waveform structure (higher)

4.1. Fundamental Frequency 
This study estimates F0 in a conservative manner, that is, unless
F0 can be confidently estimated, a zero-value is output for the 
F0 estimate. The estimator is based on the peaks in the filtered-
error-signal-autocorrelation sequence (FEAS) to minimize
formant interaction. The steps for the calculation of the F0
estimate from the autocorrelation sequence are itemized below: 

-  If no peaks > 0.46 in FEAS, then the F0 estimate is 0. 
- If only one peak is > 0.46 in FEAS, then the associated

index is estimated as the fundamental period. 
- If more than one peak is > 0.46 in FEAS, then a test is 

conducted to determine if all the peak indices are
proportional to each other within a threshold of 0.02. If

-
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true, then the second peak index is the fundamental
period.

If all the above-mentioned criteria fail, the maximum peak 
above the threshold value is selected and its index
determined as the fundamental period. 

. Normalized Root Mean Square Amplitude 
t-mean-square (RMS) amplitude is a common tool used in
al processing to estimate the average amplitude of a signal.
RMS amplitude of a token is normalized by the RMS 

plitude of the entire speech signal from which the token is
racted to account for interspeaker variation in signal
plitude. This normalization assumes that the speaker uses the 
e “speaking level” over the course of the utterance. The 

thematical formulation to compute this cue is,
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ere s[n] is the token; S[n] is the entire speech signal; N is the
gth of the speech signal in samples; and L is the length of the
en in samples. 

Figure 1. Illustration of smoothed-energy-difference 
amplitude calculation for a regular token.

Figure 2. Illustration of smoothed-energy-difference 
amplitude calculation for an irregular token.

. Smoothed-energy-difference amplitude 
 smoothed-energy-difference (SED) amplitude is found by
t computing the 512-point Fast Fourier Transform for each

e in a given token, and deriving the average energy in the
 to 1500 Hz band (in dB). This frequency-averaged

plitude is smoothed using window sizes of 6 ms and 16 ms. 



The difference between the smoothed averaged energy values
for the two smoothing window lengths is called the smoothed-
energy-difference (SED) waveform. Since the energy in regular 
phonation is smoothly varying, few peaks are expected in its
SED waveform (Figure 1). On the other hand, the SED 
waveform should show a more jagged structure for irregular 
phonation (Figure 2). Inadvertent peaks might be produced at 
the beginning and end of the SED waveform due to filtering 
artifacts from the different window lengths. In order to avoid
these artifacts, max(window size)/2 + 1 samples from the 
beginning and end of the waveform are excluded from analysis.
The SED cue is set to the largest peak in the SED waveform.

Figure 3. Illustration of shift-difference amplitude 
calculation for a regular token.

Figure 4. Illustration of shift-difference amplitude 
calculation for an irregular token. 

4.4. Shift-difference amplitude 
The shift-difference amplitude cue is largely based on work by
Kochanski et. al. [9] with minor modifications. It is a measure
of aperiodicity and the authors used it to detect prominence in
speech. This aperiodicity measure uses 10 ms from the middle
of the token as a reference. After windowing by a Gaussian with
20 ms standard deviation, sections of the token are compared
within 2 ms to 10 ms from the time of the reference, in 
increments of the sampling rate. The value of the cue is equal to 
the minimum difference between shifted sections after
normalizing by the reference section. The cue should result in a 
minimum for periodic tokens.

For each possible shift, between 2 ms and 10 ms to the left
and right, d [n] = (s[n+ /2]  s[n /2])2 is computed where 
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] is the reference at time n. The reference is multiplied by
lf to give P[n] = s[n]2, a measure of the power in the 
rence. Both d [n] and P[n] are convolved with 20 ms 
dard deviation Gaussians to yield d [n] and P[n]. d[n] = 
{d [n]} is the minimum difference over all the shifts . In 

er to normalize the output, the shift-difference amplitude cue
d[n]/ P[n])0.5.

Figure 5. Illustration of distributions of cue values 
for the four acoustic cues in this study.

5. RESULTS

. Cue separation 
 each cue, two-sample t-tests between irregular and regular
ens yielded a p-value << 0.001 (df 9332). Box plots of the
ributions are given in Figure 5. The middle line of the box is
 median, and the upper and lower lines are the upper and
er quartile values.  While the cues are statistically separable, 

 ability of the set of cues to correctly classify tokens was
luated using support vectors machines (SVMs). 

. Token classification 
Ms are learning machines for pattern classification and 
ression tasks based on statistical learning theory [10]. Given 
et of training vectors , and the corresponding class 

els  such that 
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Ms select a set of support vectors  that is a subset

he training set and find an optimal decision function

where K is an a priori 

sen kernel function. The weights 
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the Gaussian kernel, . The
experiment was carried out using the OSU SVMs Toolbox 
(http://www.ece.osu.edu/˜maj/osu svm/). The trade off between
the false negative and false positive rates was evaluated for
every possible threshold. The number of irregular tokens in the 
training set is 959. The number of regular tokens used for 
training was increased from 959 1500 2500 3500.
Classification of irregular tokens improved as the number of 
regular training tokens increased, but improvement decreased 
after 2500 samples. The classification rate of regular tokens 
does not change as the number of regular training tokens
increased from 2500 tokens to 3500 tokens. Therefore, 2500 
regular tokens and 959 irregular tokens were used for training 
the SVM. The test set consists of 4320 regular tokens and 320 
irregular tokens. The unequal size of the test set should not 
affect the performance of the SVM. It is merely an artifact of 
having an unequal number of regular and irregular tokens and is
somewhat representative of the occurrences of regular and
irregular phonation in normal speech. Using a threshold of 0, a 
recognition rate of 91.25% is obtained for irregular phonation 
with a false alarm rate of 4.98%, while regular phonation is 
classified with a recognition rate of 95.02% and a false alarm
rate of 9.75%.

)||exp(),( 2xxxxK ii

6. Discussion
The proposed set of cues provides good separation of the 
regular and irregular tokens (as evidenced by the cue
distributions and the greater than 90% classification rates), but 
is not completely successful. In this section, we discuss the
cases where tokens were mis-classified and present possible
strategies for accounting for these cases in future work.

For irregular tokens, the F0 cue is unexpectedly high for 
tokens with widely-spaced glottal pulses and evidence of 
relatively strong oscillations between pulses, where the 
periodicity of these oscillations may be detected as F0. Regular 
tokens show an unexpectedly low F0 in cases where the 
amplitude of the waveform decreases across the token, leading
to peaks in the autocorrelation function which do not exceed the
given threshold. 

Similarly, widely-spaced pulses with strong oscillations 
between pulses in irregular tokens can lead to a higher than
normal NRMS value, and low or decreasing signal amplitude 
across a regular token can lead to unexpectedly low NRMS.

The SED and SD cues tend to fall outside of expected
ranges for irregular tokens when the token contains only one or 
two glottal pulses. The SED cue for regular tokens tends to 
show inappropriately high values for some tokens from male
speakers where the F0 is low enough such that the shorter 
window (6 ms) may not always capture at least one glottal
pulse, leading to peaks in the SED waveform. The SD cue for
regular tokens tends to show unexpectedly high values for 
regular tokens when the signal amplitude changes across the
token.

Overall, two recurring reasons for cues outside of expected
ranges are: irregular tokens with widely-spaced glottal pulses
showing strong oscillations between pulses or with only one or 
two glottal pulses, and (2) regular tokens in which the signal
amplitude changes across the token or with a low F0. While, in 
general, in each of these cases, the values of the other cues are 
sufficient to offset the unexpectedly out-of-range cue, there is 
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m to improve these cues with possible reduction of between-
se oscillations or detection of envelope changes. 

7. Conclusions
et of four acoustic cues -- F0, normalized RMS amplitude, 
othed-energy-difference amplitude and shift-difference

plitude – have been proposed for separation of regular and 
gular tokens of phonation. In general, cue distributions are 
ely separated statistically and classify tokens with accuracy
s greater than 90%. The results support the stated aim of 
sification of tokens from a relatively large set of speakers—
 different speakers for training and 37 different speakers for 
ing – and confirm the ability of the cues to separate tokens 
spite of the high inter-speaker variation of irregular
nation. In addition, both male and female speakers are well
resented in the data set and the regular and irregular tokens 
d for training and testing occur in various contexts (i.e. 
rance-initial, phrase-final, utterance-final etc.). 
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