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Abstract

Discriminative training, especially Minimum Verification
Error (MVE) method plays an important role in the detection-
based ASR. Recently, discriminative training also has been
shown to be effective in large vocabulary continuous speech
recognition [1]. In this paper, we propose a rescoring frame-
work to show the improvement by fusing MVE-trained de-
tectors with a conventional recognizer. The recognizer per-
forms regular Viterbi decoding, generating possible recog-
nition candidates with corresponding likelihood in a fashion
of either N-best lists or word graphs. Detectors trained un-
der MVE criterion form and conduct hypothesis testing for
all test tokens to accomplish additional scores. A number
of linear or non-linear rescoring methods are then presented
to combine these two groups of scores. The experiments
were conducted on the TIMIT database, and the results in-
dicates that combining based on word graphs outperforms
the one on N-best lists in the final accuracy. This rescoring
framework explores possible ways to combine other inde-
pendent knowledge sources with a conventional recognizer.
Further more, it can guide the future research of the pure
detection-based ASR techniques.

1. Introduction

Although we have witnessed fast development of automatic
speech recognition (ASR) techniques for decades, the frame-
work of state-of-the-art speech recognition systems is still
known to be too rigid to incorporate new knowledge or in-
formation. These techniques are in general task specific with
a fixed system construct which does not allow alternation to
adapt to new applications without totally re-designing the en-
tire system. Moreover, mis-matched design scenarios such
as out-of-vocabulary words or different training and testing
conditions will lead to severe performance degradation.

Detection-based ASR is an alternative paradigm [2]. It
conducts a bottom-up hypothesis testing framework based
on the Neyman-Pearson lemma. This framework endows
the detection-based ASR its flexibility to combine different
knowledge sources and the ability to fuse lower level infor-
mation into higher level hypotheses, and at the same time to
neglect superfluous input. We have already seen encourag-
ing results in [3] .
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Discriminative training methods such as MinimumVeri-
ion Error (MVE) training [4] are data-driven approaches
aim at minimizing an empirical estimate of the test er-
They have been extensively applied to event verification
ications, such as speaker verification. In [4], we have
ied the performance of MVE on various broad phonetic
s detection tasks. It is a solid manifestation of the effec-
ess of the MVE modeling method in the detector design

etection-based ASR.
In this paper, we introduce a rescoring framework by
bining the scores of a conventional decoder and those
puted by MVE-trained detectors. Unlike other rescoring
hods such as [5][6], no other "knowledge-based" front-
feature is utilized to accomplish additional information.
are trying to fuse two or more relatively independent
erence” measures, which are computed on the same fea-
space, to enhance the system performance. Normally
nventional recognizer organizes decoded candidates in
forms: an N-best list or a word graph. The comparison
riments indicate that word graph is a more applicable

cture for knowledge incorporation because it contains a
er search space. Three rescoring approaches are studied
is paper on labels transcribed by taxonomical phoneme
studied in [4].
One issue in this rescoring scheme is that we don’t al-
nything in the conventional Viterbi decoding procedure.
eans the segmentation information provided by the de-
r, which is not highly trustworthy, is somehow kept val-

ng. However, it is well known that the segmentation
rmation is critical in speech recognition. Therefore this
tation would impact the final improvement. Embedding
detectors into path searching and pruning of the recog-
n is a viable solution to create a real hybrid system that
etectors are fully exploited [3]. Furthermore, it is hard

redict which specific rescoring method performs better
particular task though we are able to rank them in this
r. It is to be noted that rescoring is to enhance the de-
d result of a conventional recognizer which has its own

mality considerations; any additional optimality claim
involves other sources of knowledge would not be the
ctive here. We are trying to explore a global framework
er which people can combine the conventional decoding
lts and other independence information sources such as
othesis testing from detectors in a flexible course. Figure
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Figure 1: The rescoring diagram using MVE-trained detec-
tors.

1 depicts this diagram. We can replace any approach in the
“Rescoring Algorithm” box, adjust the structure of recog-
nition candidates, and tune thresholds up to any particular
tasks.

This paper is organized as following: we will briefly
review the theory of MVE in the next section. Rescoring
methods will be introduced in section 3. Experiments and
results are presented in section 4. Finally, we conclude the
paper in section 5.

2. Minimum Verification Error (MVE)
Training

Analogous to MCE [7], the essence of MVE [4] is to directly
minimize the total detection errors. In detection problems,
there are two different kinds of errors: type I error (miss-
ing) and type II error (false alarm). Viewed from a classifi-
cation problem perspective, there are two misclassification
measures respectively. Assume there are M classes and K
training tokens in the training set. For any training token
labeled in the ith class, a type I error (miss) may result when
applied to the detector of the ith class, and possibly M − 1
type II errors (false alarm) when applied it to detectors for
all the other classes. The type I misclassification measure
for an incoming training token Oi labeled in the ith class
can be formulated as

dI = −gi
t(O

i|Θi
t) + gi

a(Oi|Θi
a) + γi (1)

where gt = 1
T LRt(Oi|Θi

t) is the normalized log likelihood
of the target model for the ith class. T is the number of
frames in the incoming token. ga = 1

T LRa(Oi|Θi
a) is the

normalized log likelihood of the anti-model for the ith class.
Θt and Θa are respectively parameter sets of the target and
the anti models. γi is the decision threshold for class i.

At the same time, the type II misclassification measure
of the jth class for an incoming training token Oi labeled in
the ith class is

dj
II(O

i|Θj) = +gj
t (O

i|Θj
t ) − gj

a(Oi|Θj
a) + γj (2)

j = 1, 2, . . . , M, j �= i
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The two misclassification measures can be embedded
smoothed loss functions written as

liI(d
i
I) =

1
1 + exp{−αidi

I}
(3)

ljII(d
j
II) =

1
1 + exp{−αjd

j
II}

(4)

j = 1, 2, . . . , M, j �= i

lly, the empirical loss for a training set
,O2, . . . ,OK} is given by

total(Θ̃) =
1
K

K∑

k=1

M∑

i=1

litotal(Ok|Θi)1(Ok ∈ class i)

(5)
re the parameter set Θ̃ is defined by Θ̃ = {Θi

t, Θ
i
a},

1, 2, . . . , M . The composite error estimation function

l(Ok|Θi) is a combination of type I and type II errors.

litotal(Ok|Θi) = PEI l
i
I(Ok|Θi)

+ PEII

M∑

j=1,j �=i

ljII(Ok|Θj) (6)

I and PEII are penalty weights for type I and type II
rs. The minimization of Ltotal can be done through the
ralized probabilistic descent (GPD) method [7] w.r.t. all
meters.

3. RESCORING METHODS
nvestigated three rescoring methods to combine the like-
od and scores generated from the conventional decoder
MVE-trained detectors. Suppose there are M classes of
word units, hence there are M corresponding detectors
each of them consists of a target model and an anti-
el. For a segment that is decoded as the ith class with
likelihood S

(i)
decode, its jth (j = 1, 2, . . . , M ) detector

es are S
(j)
tgt and S

(j)
anti, respectively. Namely, the likeli-

d ratio for the jth detector is ratio(j) = S
(j)
tgt − S

(j)
anti.

call the score for the test segment belonging class i after
bination S

(i)
new.

The first method is called Naive-Adding (NA). From its
e we can know that it is a quite naive score combination
me. In this approach, the new score of each segment
g decoded as the ith class is

S(i)
new = S

(i)
decode − S

(i)
anti + ratio(i) (7)

reason for subtracting S
(i)
anti is to scale the decoding

e into a relatively close dynamic range with the likeli-
d ratio. This procedure is also taken in the following two
hods.



The second method is named Competitive-Rescoring
(CR). In this approach, we define a new “competitive” score
S

(i)
c .

S(i)
c = ratio(i) − log{ 1

M − 1

M∑

j �=i

exp(η · ratio(j))}1/η

(8)
and

S(i)
new = S

(i)
decode − S

(i)
anti + S(i)

c (9)

In the first method only the likelihood ratio from underlying
class of detectors are used for rescoring. But in this case, we
first compute a distance measure between the claimed class
to a geometric average of the other competitive classes. This
quantity S

(i)
c is similar to the “misclassification measure”

function d in MCE training [7] but using the corresponding
detectors’ likelihood ratio and there is a sign difference.

The third method is called Remodeled Posterior Prob-
ability (RPP). Borrowing from the idea of the recognition
word graph, we formed a pseudo-graph for each phoneme
segment. We can consider the detection results of the to-
tal M detectors are M extra pathes for the testing speech
segment. A remodeled posterior probability of the claimed
class i is defined as the ratio of two scores. The score on
the numerator is the scaled decoding score of claimed class i
plus the likelihood ratio of the detector for class i. The score
on the denominator is the sum of the numerator score and all
the other detection scores. i.e,

S(i)
new =

exp(S(i)
decode − S

(i)
anti) + exp(ratio(i))

exp(S(i)
decode − S

(i)
anti) +

∑M
j=1 exp(ratio(j))

(10)

4. Experiments and results

The experiments were conducted on the TIMIT database.
The training set has 3,696 utterances and the test set has
1,344 utterances (the utterances for speaker adaptation are
ignored). The acoustic model of the baseline decoder con-
sists of 48 CI phones defined in [8]. Each phone is modeled
by a 3-state HMM, with each state represented by 16 Gaus-
sian mixtures. The model parameters are trained by embed-
ded Baum-Welch algorithm using 39 dimensional feature
vectors with 12MFCC,12Δ, 12Δ2 and 3 log energy values.

Three taxonomical phonetic category detectors are de-
fined and trained following the same way of MVE training
in [4]. These categories include 6 classes (stops, vowels,
nasals, fricatives, silence, and others. see[9]), 14 classes
(see[10]), and 48 classes phonemes respectively.

The entire test set first went through a Viterbi decoding
process to generate N-best lists and word graphes with a
simple word-loop language model. Note that the term “N-
best” here refers to the N utterances with the highest word
string likelihood. A forced-alignment is conducted on each
testing utterance to acquire phone boundaries. We mapped
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8-phone transcription into 6-phone and 14-phone labels
heck the capability of rescoring algorithms in different
arios. The system performance reaches its upper bound
n selecting the candidate in the N-best list or word graph
ch best matches the reference phone transcription. In this
r, we approximate the value of this upper bound to be the
we get in a 100-best list. Hence, to evaluate a rescoring
rithm, the relative accuracy improvement is defined by
atio of the absolute improvement over the offset between
upper bound accuracy and the baseline accuracy. Table
ows phone recognition accuracy of the baseline decoder
upper bound of 100-best list for transcriptions in three
s of phoneme sets.

ble 1: Baseline decoder accuracy and upper bounds.

Acc(%) 6class 14class 48class
Baseline 75.44 63.61 55.33

Upper bound 80.84 70.85 62.08

N-best lists rescoring

ur experiments, we assume N = 100. All three rescor-
lgorithms are conducted for each segment of phonemes.

h phoneme will have new scores as described in the last
ion. We add all scores in an utterance together to com-

a new total score of the string. The N-best list is re-
ed based on the new total score.
Table 2 display the performance of all three rescoring
oaches on the 100-best list for 6-phone, 14-phone, and
hone transcriptions. We can see that in 6-phone and
hone cases, all rescoring methods achieve consider-
improvement. Moreover, method 1 (Naive-adding) has

least performance boosting and method 3 (Remodeled
erior-Probability) obtains the most gain. It is not sur-
ing since method 1 is the most naive approach among
e three while the method 3 tries to find a candidate with
imum value of a remodeled posterior probability, which
s relationship to Bayes risk.
In the case of 48-phone transcription, the relative im-
ement is not as high as the former two. There is even
rformance degradation when using NA. One of the rea-
could be that the accuracy of detectors is not as good
at of 6-phone and 14-phone. Further more, a combi-

on score may be sensitive to the dynamic range of the
lihood, whose numeric behavior may be erratic in a naive
hod.

Word graph rescoring

word graph pruning criterion in the experiments are set
way that only 3 pathes can exist at the same time. In
graph, each node represents a time point and each arc
esents a word. We forced-aligned each arc (word) for
neme boundaries and applied all three algorithms accord-
y to calculate new scores for each phone in this word.



Table 2: N-best rescoring performance.

phoneme Acc(%) method1 method2 method3
class (NA) (CR) (RPP)

Baseline 75.44 75.44 75.44
6class Upperbound 80.84 80.84 80.84

Rescored 76.36 76.38 80.00
Relative 17.04 17.40 84.44
Baseline 63.61 63.61 63.61

14class Upperbound 70.85 70.85 70.85
Rescored 65.38 67.27 68.45
Relative 24.45 50.55 61.88
Baseline 55.33 55.33 55.33

48class Upperbound 62.08 62.08 62.08
Rescored 55.04 55.61 55.91
Relative -4.30 4.15 8.59

The new score for a word is the sum of all new scores of
the phones belonging to this word. A best word sequence is
then selected from the underlying word graph based on new
word scores.

We only conduct experiments on the 48-phone case. We
can see that RPP still outperforms the other two methods.
The other observation is that the rescoring performance with
word graphs is higher than the ones with N-best lists. It is
expected since a word graph represents much larger search
space than a N-best list.

Table 3: Word graph rescoring performance for the 48-phone
transcription.

Acc(%) method1 method2 method3
(NA) (CR) (RPP)

Baseline 55.33 55.33 55.33
Upperbound 62.08 62.08 62.08

Rescored 55.30 56.02 56.10
Relative -0.44 10.22 11.4

5. Conclusions

We have proposed a rescoring framework for combining
relatively independent information sources. In this paper,
we specifically rescored decoding likelihood using MVE-
trained detectors. Three different rescoring methods have
been introduced and the experiment results show that cre-
ating a pseudo-phone graph and recomputing the poste-
rior probability accomplishes the best performance enhance-
ment. Meanwhile, two structures for re-ranking decoding
candidates, the N-best list and the word graph, are investi-
gated. As expected, the word graph outperforms N-best list
in our rescoring tasks since it represents a richer search space.
In this paper, MVE training shows promising results in help-
ing the conventional ASR techniques. However, detectors
can only apply incremental impact on the final results since
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curate segmentation information is kept during rescor-
To overcome this limit, We will migrate to complete

ction-based ASR in the future.
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