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Abstract
A speaker clustering algorithm is presented that is based

on an eigenspace representation of Maximum Likelihood

Linear Regression (MLLR) transformations and is used for

training cluster-dependent regression-class trees for MLLR

adaptation. It is shown that significant automatic speech

recognition (ASR) system performance gains are possible

by choosing the best regression-class tree structure for indi-

vidual speakers. To take advantage of the potential gains, an

algorithm for combining the MLLR mean transformations

from cluster-specific trees is described that effectively re-

sults in a soft regression-class tree. In conversational speech

recognition, only small overall improvements are obtained,

but the number of speakers that have performance degrada-

tion due to adaptation is reduced by over 70%.

Index Terms: speech recognition, speaker adaptation,

speaker clustering, regression class trees.

1. Introduction
In current automatic speech recognition (ASR) systems, a

single speaker-independent (SI) regression-class tree is used

in MLLR adaptation with run-time pruning to decide on the

number of regression classes to use for each new speaker.

The SI tree is often built using data-driven clustering tech-

niques on training speakers using some criterion related to

similarity of acoustic units. Hypothesizing that the transfor-

mations may be used to characterize dialect-related pronun-

ciation variation as well as speaker-specific variation, this

work investigates the use of different regression-class tree

structures in speaker clustering. We present a speaker clus-

tering technique to split a large group of training speakers

into multiple clusters using an eigenspace representation of

their MLLR transformations and train a separate regression-

class tree for each cluster. Experiments show that differ-

ent regression-class tree structures are learned for different

clusters of training speakers, and the system performance

on unseen test speakers varies across these trees and results

in significant performance gains when the best tree structure

is chosen for each speaker.

To choose the best regression-class tree structure for an

unseen test speaker in an ASR system, we estimate weights
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linearly combining the MLLR mean transformations

several trees using a two-step maximum likelihood

edure. Small improvements in system performance are

ieved by using this approach on recent NIST conver-

onal speech recognition test sets. In addition, it leads

mproved performance on a majority of those speakers

do not benefit from MLLR adaptation using the SI

ession-class tree.

The rest of the paper is organized as follows: Section

scribes two types of regression-class trees used in this

k; Section 3 describes the ASR system and corpus used;

tion 4 discusses the speaker clustering procedure and

le system performance gains; Section 5 details an al-

thm for combining MLLR transformations from several

ession-class trees and its performance. Finally, Section

ncludes by summarizing the main findings.

2. Regression-Class Trees
use of regression-class trees in MLLR adaptation [1]

MMs has proven to be an effective strategy for adapt-

acoustic models (Gaussian distributions). The acoustic

s are organized into a tree using either expert knowledge

y applying a data-driven clustering procedure (agglom-

ive or divisive) and an appropriate similarity measure

comparing the units. Given adaptation data from a test

ker, the tree is descended from the top to those nodes

satisfy a predetermined minimum count of data frames,

a transformation is estimated for each such node (re-

sion class) to be shared by all its members, allowing for

ptation of both observed and unobserved units.

We have experimented with two divisive clustering ap-

ches for building regression-class trees: constrained
unconstrained. In both cases, we start by estimating

tivariate Gaussian distributions for each triphone state,

collect these to obtain phone-level sufficient statistics.

n, in the constrained approach, we design a decision

to cluster the Gaussians, choosing from linguistically-

ivated questions about the center phones to maximize

lihood, similar to clustering triphone states of HMMs

g decision trees [2]. In the unconstrained approach, we

d a binary tree by splitting the distributions at each level

two clusters, using k-means clustering and a symmetric
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Kullback-Liebler distance measure. Both trees are grown to

the point where all leaf nodes correspond to a single phone.

The two types of trees have the same set of leaf nodes but

different branching structure leading to the leaves, which

leads to different adaptation results because it is often the

case that the estimated transforms correspond to internal

nodes, given limited adaptation data.

3. ASR System and Corpus
The ASR system used for this work is SRI International’s

Decipher large vocabulary engine [3]. We used a ver-

sion of the system that runs in five times real time and

achieves competitive performance on conversational tele-

phone speech (CTS) tasks. For first-pass decoding, the sys-

tem uses word-internal triphones as HMMs, Mel-frequency

cepstral coefficients (MFCCs) in the front end, a bigram

language model, and phoneloop MLLR to produce lattices.

Subsequently, these lattices are expanded using a 4-gram

language model and also processed using confusion net-

works to produce higher quality hypotheses. The second

pass of the system uses acoustic models based on crossword

triphones and perceptual linear prediction (PLP) feature

vectors as the front end. The PLP-based acoustic models

also use, among other standard normalization techniques,

speaker adaptive training based on constrained MLLR. The

mean vectors and diagonal covariances of the Gaussian dis-

tributions of the PLP-based acoustic model are adapted to

test speakers using MLLR and the hypotheses from the first

stage. A full matrix transformation with an offset vector for

the Gaussian means and a diagonal variance transformation

vector are estimated using either type of regression-class

tree described above, for each node with a minimum data

count of 1700 frames, which results in an average of eight

regression classes to be used for speakers in the NIST CTS

test sets. This is effectively cross-system adaptation since

adaptation hypotheses from MFCC-based acoustic models

are used to adapt PLP-based acoustic models. For the rest

of the paper, all references to MLLR adaptation are for the

second stage of this system.

In this work, the corpus used for speaker clustering

was comprised of conversations of speakers from the Fisher

Phase 2 [4] corpus that were not used in training the ASR

acoustic model and the recent NIST CTS test sets (1998-

2002), which together included 1186 male speakers and 567

female speakers. Only the NIST test sets from 1998-2002

were used for the error analysis, since the transcriptions are

more reliable for this data. Evaluation is on the independent

Eval03 test set.

4. Cluster-Dependent Regression-Class Trees
4.1. Speaker Clustering based on MLLR Transforms

We developed a procedure that splits a large group of train-

ing speakers into multiple clusters based on an eigenspace
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esentation of MLLR transforms. Eigenspace-based

LR representations were found to be useful for gen-

classification [5] and faster speaker adaptation in ASR

In [7], MLLR transformation-based representation

e found to improve speaker recognition accuracy. In

trast, our approach aims to form speaker clusters using

nspace representations of MLLR transformations and

a regression-class tree for each speaker cluster, to cap-

cluster-specific attributes in the structure of the trees.

idea is that choosing the correct regression-class tree

cture to use with MLLR adaptation should lead to im-

ed performance.

We first estimate MLLR transformations for a large cor-

of speakers using an SI constrained regression-class tree

has R regression classes (R = 8). Then we vectorize

MLLR transformations (mean transform, offset vector)

roduce a d(d + 1)-length vector for a d-dimensional

ure vector (d = 39) and normalize each dimension to

e zero mean and unit variance. Next, we perform princi-

component analysis (PCA) using the vectorized MLLR

sformations of all regression classes of all speakers, ex-

t the ones corresponding to the non-speech class. The

torized transforms are then projected onto the first N
cipal components (N = 8), and we form an (R − 1)N -

ensional supervector for each speaker by stacking to-

er the PCA-reduced MLLR transforms for each of the

1 classes (except the non-speech class). Finally, we use

eans clustering to partition the speakers into S clusters

= 4). The supervectors capture the speaker-dependent

rmation present in MLLR transformations, and the clus-

g groups together speakers that share similar transform

racteristics. We then train a separate regression-class

, both constrained and unconstrained, for each speaker

ter. To train the two kinds of cluster-specific regression-

s trees, we apply the procedures described in Sec. 2 on

hone-level statistics collected for each cluster.

As expected, the cluster-dependent regression-class

s have different branching structures. Since the struc-

of regression-class trees describes similarities among

ters of phones (based on phone-level statistics), we con-

ure that each cluster-specific tree to be representative of

ect or pronunciation patterns that are representative of

luster. We manually compared the regression-class trees

ed for each speaker cluster for any noticeable cluster-

ific characteristics. Among the constrained regression

s, we found that the branches of the trees that split the

ustic units describing vowels exhibited more differences

e hierarchical structure than the branches involving the

sonants, which is consistent with linguistic studies on

onal variation in American English [8]. The uncon-

ined trees had structures that were considerably different

those of the constrained trees and also exhibited more

rsity in structure details across the clusters than the con-



strained ones. We experimented with several different val-

ues of N , the number of principal components for project-

ing the vectorized MLLR transforms, and chose N = 8,

since it produced the most diversity in the structure of the

cluster-specific trees.

4.2. Oracle Cluster-Dependent Adaptation

To determine the potential performance gains from these

trees, we computed the recognition error rates for the speak-

ers in recent NIST CTS test sets (1998-2002) for every

regression-class tree. For experiments in this section, we ig-

nored around 1% of these speakers for whom there was no

change in performance across the different regression trees,

and assigned the rest of the speakers to that cluster whose

tree achieved the best performance, and recomputed the

overall word error rate (WER) for each new speaker cluster

with every regression-class tree. The results for the uncon-

strained tree are shown in Table 1, where the rows represent

test sets for each speaker cluster and the columns the cluster-

specific regression-class trees. Obviously, the best WER is

seen for all cases when the cluster-specific test set matches

its target regression-class tree, i.e., the numbers along the

diagonals of the tables. Additionally, the upper bound of

potential gains over the SI tree are in the ranges of 0.6-0.8%

absolute for the unconstrained tree. On analyzing the per-

formance numbers for each speaker, we noticed that when

the cluster-specific test set matches its target regression-

class tree, the error rates for the worst performing speaker

improves by 0.5-1.9% absolute, and the speaker-specific er-

ror rates have a lower standard deviation, in the range of

1.5-2.0% relative compared to the SI tree. Similar observa-

tions are made on analysis of the performance figures from

the constrained trees, and are not presented here for brevity.

Clust 1 Clust 2 Clust 3 Clust 4 SI

Clust 1 20.5 21.2 21.2 21.3 21.3

Clust 2 22.0 21.3 22.1 22.1 21.9

Clust 3 24.1 24.4 23.6 24.0 24.3

Clust 4 21.6 21.8 21.6 20.9 21.7

Table 1: WER(%) with unconstrained trees.

Test Set Clust 1 Clust 2 Clust 3 Clust 4 SI

Clust 1 21.2 21.1 21.0 21.1 21.3

Clust 2 21.9 21.9 22.0 21.9 21.9

Clust 3 23.8 23.8 23.9 24.1 24.3

Clust 4 21.4 21.4 21.4 21.4 21.7

Table 2: WER(%) with retrained unconstrained trees.

To gain a better understanding of the performance of

cluster-specific regression class trees for individual speak-

ers, we used the new assignment of speakers to that clus-

ter whose tree produced the lowest WER, retrained the un-

constrained regression-class trees for each cluster using its
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ne-level statistics and the procedure in Sec. 2, and per-

ed the error analysis just described. However, the re-

s from this analysis, shown in Table 2, do not exhibit

erns similar to those in Table 1, which indicates the

tence of a more complex relationship between speaker

ter membership and performance obtained from cluster-

ific regression-class trees.

5. Soft Regression-Class Trees
ed on the evidence presented in the previous section,

developed a procedure to incorporate the cluster-specific

ession-class trees into the MLLR framework, using a

ar combination of the transforms learned using the indi-

al trees. Since the structure of the regression-class trees

ers across speaker clusters, each tree will specify a dif-

nt transformation tying scheme, and the weighted com-

tion approach can be viewed as a “soft” assignment of

ustic units to regression classes. The expectation is that

resulting “smoothed” transform should be more robust

that from a single tree in the case where the oracle clus-

ssignment is not known.

Weight Estimation

his work, we have focused on only linearly combining

mean transformations by estimating weights that max-

e the likelihood of a speaker’s adaptation data. Previ-

work on combining transformations using weights has

n reported in [1, 9]. The work in [1] estimates SI or

ker-dependent (SD) weights for transformations for dif-

nt regression classes of the same tree, while that of [9]

lves combining transformations that are representative

speaker of a given speaker cluster. The key difference in

approach is that for an unseen test speaker we estimate

ghts to combine transformations, of the same speaker,

have been estimated using regression classes represen-

e of different speaker clusters.

Define the transformed mean vector of the m-th Gaus-

as

μ̂m = M̂mα̂(l)

re

M̂m = [μ̂(1)
m · · · μ̂(S)

m ], μ̂(s)
m = Ŵ(s,r)ξm,

re Ŵ(s,r) is the transformation associated with the r-th

ession class of the s-th speaker cluster on the extended

n vector ξm, and

α̂(l) = [α̂(l)
1 · · · α̂(l)

S ]T

re α̂
(l)
s are the weights for the mean transformation at

l-th node of the s-th regression-class tree. Using a pro-

ure similar to [1], the weights α
(l)
s can be estimated by

ing



[ R∑
r=1

Cr∑
c=1

Mc∑
m=1

T∑
τ=1

γm(τ)μ̂(s)T
m Σ−1

m M̂m

]
α̂(l) =

R∑
r=1

Cr∑
c=1

Mc∑
m=1

T∑
τ=1

γm(τ)μ̂(s)T
m Σ−1

m o(τ),

or
Z(l)α(l) = V(l) (1)

where R is the number of regression classes containing Cr

mixture Gaussian distributions, each of which has Mc com-

ponent Gaussian distributions; o(τ) is the observation vec-

tor at time τ and γm(τ), μ̂m and Σ−1
m are the occupation

probability at time τ , mean vector, and inverse covariance

of the of the mth Gaussian distribution.

The maximum likelihood solutions for the weights do

not have constraints on them. To handle instances when

numerical instability leads to bad estimates of weights, we

introduce Lagrange multipliers into the objective function,

to constrain the weights to be non-negative and sum to one.

It is straightforward to solve for the Lagrange multipliers,

and the details are not provided here.

5.2. Performance of Soft Regression Trees

For a given test speaker, we first estimate the mean and di-

agonal variance MLLR transformations for every cluster-

specific regression-class tree from HMM state occupation

statistics collected using the speaker’s adaptation data and

the unadapted SI acoustic model and, we also determine

the tree that produces the highest gain in likelihood on the

adaptation data. Using the same statistics, we next estimate

the mean transformation smoothing weights, without any

inequality constraints (as described in the Sec. 5.1) and its

corresponding diagonal variance transformation, and deter-

mine its likelihood gain on the adaptation data. If the gain

is less than the best gain from the individual cluster-specific

trees, we estimate the smoothing weights with inequality

constraints, and its corresponding diagonal variance trans-

formation. Finally, the SI acoustic model is adapted using

the appropriate set of transformations.

We also experimented with tying the mean transforma-

tion smoothing weights at the root (global weights) and at

the leaves of the regression-class trees, similar to the tying

of regression classes in the tree. In Table 3, we report re-

sults of using soft regression-class trees on the NIST CTS

test set for year 2003. The results in Table 3 show small

improvements over the baseline. On analyzing the perfor-

mance of individual speakers with the soft regression class

trees, we found that about 74% of speakers use weights es-

timated without constraints. Additionally, we noticed that,

while for about 15% of the speakers the WER increases af-

ter MLLR adaptation using the baseline system (with SI

regression-class tree), a majority of these speakers (about

70%), benefit from using the soft regression-class trees.

C

B

+

+

The

clus

clas

tree

line

spo

buil

aco

cha

terin

only

the

man

the

help
ciph
No.
here
fund

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

1136

INTERSPEECH 2006 - ICSLP
WER(%) on Eval 2003

onfiguration Constrained Unconstrained

aseline 21.4 21.5

ML weights(root) 21.3 21.4

ML weights(leaves) 21.3 21.3

Table 3: Results with soft regression-class trees

6. Conclusions
two main contributions of this work are a speaker

tering algorithm for building cluster-specific regression-

s trees, and a framework for using soft regression-class

s for unseen test speakers by estimating weights for a

ar combination of MLLR mean transformations corre-

nding to cluster-specific regression-class trees. The trees

t for the different speaker clusters reveal partitions of

ustic units that are possibly indicative of cluster-specific

racteristics that can be used for automatic dialect clus-

g. The soft regression-class trees are able to achieve

a small overall improvement in performance. Since

oracle clustering results hold promise of bigger perfor-

ce wins, we plan to investigate further refinements to

weight estimation procedure.
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