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Abstract 
This paper addresses the issues of robust automatic speech 
recognition (ASR) for accented Mandarin in car environments. 
A robust front-end is proposed, which adopts a Minimum 
Mean-Square Error (MMSE) estimator to suppress the 
background noise in frequency domain, and then implements 
spectrum smoothing both in time and frequency index to 
compensate those spectrum components distorted by the noise 
over-reduction. In the context of Mandarin speech recognition, 
a special adverse factor is the diversification of Chinese 
dialects, i.e. the pronunciation difference among dialects 
decreases the recognition performance if the acoustic models 
are trained with an unmatched accented database. We propose 
to train the models with multiple accented Mandarin databases 
to solve this problem. Evaluation results of isolated phrase 
recognition show that the proposed front-end can obtained the 
average error rate reduction (ERR) of 58.3% and 9.7% for 
artificial car noisy speech and real in-car speech respectively, 
when compared with the baseline in which no noise 
compensation technology is used. The efficiency of the 
proposed model training scheme is also proved in the experiments. 
Index Terms: robust speech recognition, in-car speech, MMSE 
enhancement, spectrum smoothing, accented Mandarin 

1. Introduction 
In recent years an important application of ASR technologies 
is to act as a voice-activated human-machine interface in car 
navigation systems.  These embedded ASR modules provide a 
safe and convenient input method, and usually make good 
balances between usable functionality and system complexity. 
Consequently, such devices become very popular and many 
kinds of mass-produced cars have been equipped. 
Among the difficulties in such in-car speech recognition tasks, 
the most critical problem is to cope with the background noise, 
which is incurred by mechanical oscillation of engine, friction 
between the road and tires, blowing air outside the car, and etc. 
Noise robustness is the common challenge of ASR systems, 
and many approaches have been proposed for this issue [1]. 
Some methods [2][3][4][5] aim at designing a robust front-end 
in which the interfering noise is removed from the speech or 
the acoustic feature is inherently less distorted by noise. Other 
methods [6][7][8] are concentrated on model adaptation 
technologies which decrease the mismatch between noisy 
speech features and the pre-trained acoustic models. Generally, 
model adaptation methods are superior to those that extract 
robust features [9], but their major disadvantage is that they 
usually cause huge computation load. Besides, the less 
dependency between the front-end and the recognizer can 
effectively reduce the complexity of ASR systems. In this 
paper, we propose a robust front-end, in which MMSE 
estimation algorithm [10] is used to suppress the noise in 
frequency domain. Compared to other conventional speech 
enhancement algorithms, such as spectral subtraction (SS) [2], 
the MMSE estimation is more efficient in minimizing both the 
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ual noise and speech distortion. In speech enhancement, 
e spectrum components at very low signal-to-noise ratios 
R) tend to be floored by meaningless threshold in Mel-
ed filter binning stage because of the noise over-reduction. 
n not floored, these spectrum components are prone to 
essively degrade the recognition performance. We propose 
ooth the spectrum both in time and frequency index with 

metic sequence weights. Thus, those unreliable spectrum 
ponents will be fed with speech energy from neighbors 
 high local SNRs, and the recognition rate can be 
iently improved. 

he context of Mandarin speech recognition, an inevitable 
lem is the diversification of Chinese dialects. The 

ectal pronunciation characteristic will affect the style of 
ring Mandarin speech and cause the phonetic and acoustic 
usion [11]. If the speaker has a regional accent different 
 the standard Mandarin on which the acoustic models are 
ed, the recognition performance will be degraded. 
resentative methods for this issue include speaker and 
el adaptation [12][13], accent detection and model 
ction [14], and pronunciation modeling [13]. In this paper, 
propose an acoustic model training scheme that uses 
tiple accented Mandarin databases, and confirm its 
iency in isolated phrase recognition task. 

 rest of the paper is organized as follows. Section 2 
ribes the proposed noise robust front-end. Section 3 
yses the problem of accented Mandarin speech recognition 
introduce our model training scheme for this issue. 

ion 4 and section 5 describes the experiments in details. 
lly, section 6 concludes the paper. 

2. Noise robust front-end 
 MMSE estimation algorithm 

raim and Malah proposed a short-time spectral amplitude 
SA) estimation algorithm based on a MMSE criterion to 
nce the noise corrupted speech [10]. One advantage is 

 MMSE estimation algorithm can efficiently suppress the 
ground noise while at the expense of very few speech 
rtions. Another property of this method is that it can 
inate the residual “musical noise”. 
assume that the noise is additive and independent of the 
n speech, and after fast Fourier transform (FFT) analysis 
windowed speech frames each spectral component is 
stical independent and corresponds to a narrow-band 
ssian stochastic process. Let A(k, n), D(k, n) and R(k, n)
te the kth spectral component of the nth frame of speech, 

e, and the observed signals respectively, the estimation of 
n) is given as 

1, ) ( 0.5;1; ) ( , )
2 (1 ) 1

k k k

k k k

n M R k n      (1) 

re M() is the confluent hyper-geometric function, the a
ri SNR k and the a posterior SNR k  are defined as : 
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In practice, we use a voice activity detection (VAD) based 
noise estimation method and substitute the estimation of clean 
speech by the enhanced spectra of previous frame. 

2.2. Spectrum smoothing after MMSE enhancement 

The MMSE enhancement algorithm can be interpreted as it 
suppresses or emphasizes the spectrum components according 
to their local SNRs. The speech signals in those components at 
very low SNRs will be seriously distorted due to the noise 
over-reduction.  
Our proposed front-end is based on the framework of cepstral 
feature extraction, in which a threshold is usually essential to 
eliminate the sensitivity of logarithmic transform to very small 
outputs of the Mel-scaled filters. Thus, after speech 
enhancement, those low SNR spectrum components tend to be 
floored by a meaningless threshold in Mel-scaled filter binning 
stage, which causes the mismatch between the features and the 
acoustic models. Even over the thresholds, the low SNR 
components are also prone to aggressively degrade the 
recognition performance. 

Figure 1: Spectrum smoothing in time and frequency index 

In order to compensate the spectrum components distorted by 
noise over-reduction, we propose to smooth the spectrum both 
in time and frequency index with symmetrical normalized 
arithmetical sequence weights. The unreliable spectrum 
component will be filled with speech energy from neighboring 
bins whose local SNRs are high and avoid being floored in 
binning stage, consequently. Thus, the implementation of 
MMSE enhancement is tamed towards ASR tasks and the 
recognition performance is efficiently improved further. 
At frame n and frequency band k, the smoothed spectrum 
component ( , )A k n  is obtained as follows:
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where ( )Fw i  is the arithmetic sequence weight in the 
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igure 2: Spectrum examples before and after smoothing
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'[ ( ), , (0), , ( )]F F F F Fw L w w L and (0)Fw is the 

ht of current frequency bin. ( )Tw j  and 
TW  are the 

othing weights in time index and have the similar 
nitions. The matrix

F TA corresponds to the spectrum block 
 is used for smoothing. As illustrated in Fig.1, in Eq.(3) the 
ession in matrix multiplication style indicates that we can 
ly smooth the spectrum in frequency index and then in 
 index, or equivalently reverse the order. Fig.2 gives the 
trum examples before and after smoothing, and it is very 

ious that the low SNR components effectively acquire the 
ch energy from neighboring bins. 

3. Robust ASR for accented Mandarin 
ajor difficulty in Mandarin speech recognition is to cope 
 various accented pronunciation. In China, there are seven 

or dialects and each has a particular pronunciation 
erty. For example, /zh/ is usually pronounced as /z/ by 
kers in Wu dialect regions, whose representative city is 

nghai. Such phenomena in accented Mandarin cause both 
netic and acoustic confusions. If the ASR system is trained 
 standard or a certain dialectal Mandarin database, it will 
to perform well when the speaker has a different regional 
nt compared to recognizing the matched speech. In real 
ications diversification of Chinese dialects is unavoidable, 
 robustness to accented Mandarin is a critical issue in 
gning a universal ASR system for all kinds of accents. 
his paper we propose to train the acoustic models by 
tiple accented Mandarin speech databases. With this 
ing scheme, the acoustic models are capable of covering 
stical characteristics of possible accented pronunciations 
er moderate model size. Evaluations prove its efficiency in 
ted phrase recognition task, which is commonly adopted 
e scenario of in-car speech recognition. Besides, using a 

orm acoustic model trained on multiple dialectal databases 
the advantage to make the ASR system flexible and reduce 
omplexity.  

time
10 20 30 40 50 60 70 80 90 100 110

time
10 20 30 40 50 60 70 80 90 100 110

pectrum before smoothing

pectrum after smoothing 



4. Experiment setup 

4.1. Front-end configurations 
In the experiments, the speech data are sampled at 11025Hz 
and 16 bits quantization. The frame length and window shift 
are 23.2ms and 11.6ms, respectively. In spectra processing, 
after MMSE speech enhancement and spectrum smoothing, 24 
triangle Mel-scaled filters are applied to combine the frequency 
components in each bank, and the outputs are compressed by 
logarithmic function. Then the Discrete cosine transform (DCT) 
decorrelation is performed on the log-spectrum. The final 
acoustic feature of each frame is a 33 dimensional vector 
consisting of 11 Mel frequency cepstral coefficients (MFCC) 
and their first and second order derivatives. 

4.2. Acoustic models 
For Mandarin speech recognition on isolated phrase task, we 
adopt the model structure with moderate complexity, in which 
each Mandarin syllable is modeled by a right-context-dependent
INITIAL (bi-phone) plus a toneless FINAL (mono-phone). 
Totally, there are 101 bi-phone, 38 mono-phone and one 
silence hidden Markov models (HMM). Each model consists 
of 3 emitting left-to-right states with 16 Gaussian mixtures. 

4.3. Databases 
Three accented Mandarin speech databases, denoted as ACM1, 
ACM2 and ACM3, are used for the evaluations, each of which 
was collected in the representative city of the corresponding 
dialectal region. The three are the major dialects in China and 
the accents are quite different from each other. The speakers 
are native and the speech data are recorded in quiet 
environments. Each database includes 50000 utterances in 
training set and 2000 in testing set. In recognition tasks, the 
vocabulary includes 500 isolated phrases. 
To improve the robustness of ASR system we use an immunity 
learning scheme [15] in which the acoustic models are trained 
in simulated noisy environments by artificially adding car 
noises to clean training utterances at different SNRs. There are 
12 kinds of car noises in the experiments, which are the 
combinations of the following three conditions: 
(1) Speed (km/h): 40, 60 and 100 
(2) Road type: “asf” (asphalt), “tun”(tunnel) and “con” (concrete) 
(3) Air-conditioner state: on/off. 
We also generate  artificial in-car noisy test speech for evaluation. 

4.4. Real in-car evaluation speech data 
To evaluate the proposed ASR system in realistic scenarios, 
in-car Mandarin speech data are collected from native speakers 
in the same three cities mentioned above. The speech is 
recorded in the car cabinet through a distant microphone 
placed in the roof lamp under idling or driving (speed is 
around 100km/h) conditions.  

5. Evaluation results and analysis 

5.1. Accented Mandarin recognition experiments 

To improve the robustness for different accented Mandarin 
speech recognition, we propose to train the acoustic models on 
multiple accented Mandarin databases, i.e. the three training 
sets from ACM1, ACM2 and ACM3 are merged into one that 
is denoted as ACM3in1. We also train the models with single 
accented database for comparison. 
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le 1. Experimental results (WER, %) of clean accented 
darin speech recognition task. 

Accented Testing Set ining 
heme ACM1 ACM2 ACM3 

Ave. 

M1 1.30 5.20 2.90 3.13 
M2 2.90 1.15 2.70 2.25 
M3 2.65 2.65 1.70 2.33 
3in1 1.55 1.85 2.20 1.87 

le 1 shows the word error rate (WER) results in clean 
nted Mandarin recognition experiments. From the results 
an find that if the acoustic models are trained on a certain 
nted Mandarin database, the recognition performance is 
 high to deal with the same accented speech, but 
atically degrades in the cross testing with another 

ectal accent. For example, in training scheme ACM1, the 
R for matched testing set is 1.30% and drastically drops to 
% and 2.90% when dealing with the speech from ACM2 
ACM3, respectively. The proposed training scheme, 
3in1, shows the robustness to the variation of dialectal 

unciation and provides consistent satisfying performance 
each accented Mandarin testing set. Compared to the 
1, ACM2 and  ACM3 scheme, the proposed ACM3in1 

me achieves the average ERR of 40.3%, 16.9% and 19.7%, 
ectively. 
 Evaluations on artificial in-car noisy speech 
lve car noises are artificially added to clean speech at 
rent SNRs from –5dB to 20dB with a 5dB step to evaluate 
robustness of our proposed front-end. The clean test set 
ists of 600 utterances from the three accented Mandarin 
bases and totally there are 72 corresponding noisy versions 
car noises 6 SNRs). Fig. 3 shows the experiments results, 
hich the baseline refers to the standard MFCC without any 
e robust technology.  
 3(a) shows the WER averaged by 12 car noises at each 
.  We can observe that the baseline front-end performs 
 in high SNR conditions, e.g. at 20dB the recognition 
racy is 97.07%. However, interfering noises cause serious 
atch between the features and the models, and below 

B the baseline performance drops rapidly.  If the MMSE 
ch enhancement algorithm is adopted, the noise will be 
iently suppressed in the spectrum. The front-end applying 
SE enhancement significantly improves the robustness, 
n compared to the baseline. Spectrum smoothing both in 
 and frequency index tames the implementation of MMSE 
ch towards ASR application, and from the results it is very 

ious that the spectrum smoothing algorithm further 
roves the recognition performance of MMSE method. In 
experiments, the proposed MMSE-Smooth scheme achieves 
average ERR of 58.3% versus the baseline. 
 3(b) gives the WER averaged by the six SNRs, from which 
performance difference under each car noise is analyzed. 
find that the recognition performance in air-conditioner on 
high speech driving conditions is obviously lower than in 
opposite conditions. The reason is that ASR performance 
s to be degraded more seriously by broadband noises. In 
 adverse environments mentioned above the dominant 
e source is the air friction from the air-conditioner and the 
d outside the car, which produces the broadband white-like 
ground noises and consequently causes dramatic 

ormance drop for recognition. The experimental results 
 show that the proposed front-end can significantly 
rove the performance in all conditions. 



Figure 3. Evaluation results in artificial in-car noisy environment.

5.3. Evaluations on real in-car speech 

The proposed front-end is also evaluated on real in-car speech 
database, as showed in Fig. 4. There are 4795 utterances in 
idling state test set and 4810 in driving state test set, respectively.
From the experimental results, it can be concluded that the 
proposed method efficiently improves the robustness for real 
in-car speech recognition task and achieves the average ERR 
of 9.7% versus the baseline. The ERR here is much lower than 
that in artificial in-car noisy speech evaluations. The reason is 
that the background car noises of the in-car test speech are not 
so aggressive and the typical SNR is about 10dB.

6. Conclusions 
This paper presents a robust ASR system for accented 
Mandarin speech in car environments. In the front-end, a 
MMSE estimation algorithm is utilized to efficiently suppress 
the background noises, and then the noise over-reduced 
spectrum components are compensated by smoothing the 
enhanced spectrum both in time and frequency index with 
arithmetic sequence weights. To cope with various dialectal 
pronunciation styles in Mandarin speech, the acoustic models 
are trained on multiple accented Mandarin databases. It can be 
concluded from the evaluation results that our proposed 
methods can efficiently improve the robustness against both 
the car noise and accent variation in Mandarin speech. 
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ure 4. Evaluation results in real in-car speech recognition. 
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