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Abstract 
This paper studies several discriminative models for spoken 
language understanding (SLU). While all of them fall into the 
conditional model framework, different optimization criteria 
lead to conditional random fields, perceptron, minimum 
classification error and large margin models. The paper 
discusses the relationship amongst these models and compares 
them in terms of accuracy, training speed and robustness. 
Index Terms: discriminative training, conditional random fields 
(CRFs), large margin (LM) training, MCE, perceptron, spoken 
language understanding (SLU). 

1. Introduction 
SLU addresses the problem of extracting semantic meaning 
conveyed in a user’s utterance in a specific domain. A domain is 
often defined with frame-like structures, as the simplified 
example shown in Figure 1 for the Air Travel Information 
System (ATIS) domain [1]. The task of SLU is to map a user’s 
utterance into a semantic representation, which is an 
instantiation of the semantic frames. An example of semantic 
representation is shown in Figure 2 for the utterance “Show me 
the flights departing from Seattle arriving at Washington D.C.” 
or “Flights from Seattle to Washington D.C. please.”  

frame name=“ShowFlight”
slot name=“DCity” filler=“City”/
slot name=“ACity” filler=“City”/

/frame
frame name=“GroundTrans”

slot name=“City” filler=“City”/
/frame

Figure 1. Simplified semantic frames in the ATIS domain. A frame 
represents a command (the name of the frame) in the domain and the 
slots associated with the command. The filler attribute of a slot 
specifies the semantic object that can fill a slot. For example, a string 
covered by the “City” rule in a context-free grammar (CFG) can be the 
filler of the ACity (ArriveCity) or the DCity (DepartCity) slot. 

ShowFlight”
DCity Seattle /DCity
ACity Washington D.C. /ACity

/ShowFlight
Figure 2. Semantic representation is an instantiation of the semantic 
frames in Figure 1. 

        SLU is traditionally solved with a knowledge-based 
approach. In the past decade many data-driven generative 
statistical models have been proposed for the problem [2]. 
Among them a HMM/CFG composite model [2] integrates 
knowledge-based approach in a statistical learning framework, 
which uses CFG rules to define the slot fillers and hidden 
Markov models (HMMs) to disambiguate command and slots in 
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utterance. The CFG rules may be obtained from a domain-
ependent library (e.g., for date and time expressions), or from 
omain specific database (e.g., city and airport names.) The 
ology of the HMMs is determined by the domain defined by 
antic frames. The inclusion of the prior knowledge in the 
istical model compensates for the dearth of labeled data for 
del training. The HMM/CFG composite model achieves the 
erstanding accuracy at the same level as the best performing 
antic parsing system based on a manually developed 

mmar in ATIS evaluation [3].  
    The prior knowledge about a domain is similarly exploited 
iscriminative conditional models for further improving the 
erstanding accuracy. We have shown that discriminative 
er and the capability of incorporating overlapping features 

conditional random fields (CRFs) [4] has resulted in more 
n 20% slot error rate reduction for SLU over the generative 
M/CFG composite model [5]. 

   We have recently investigated other discriminative models 
the same log-linear framework to tackle the problem, 

luding perceptron [6], minimum classification error (MCE) 
and large margin (LM) [8]. This paper discusses the 

tionship amongst these models, compares their performance 
terms of accuracy, training speed and robustness to data 
rseness.  
   The paper is organized as follows. Section 2 lays down the 
ditional model framework for SLU. Section 3 introduces the 
erent optimization criteria that result in CRFs, perceptron, 
E and LM models. Section 4  compares the models with 
erimental results, and Section 5 concludes the paper. 

2. Conditional Models for SLU 
 convert the SLU problem into a sequential labeling problem 
t assign a domain-related tag to each word in an utterance. 
 example, the semantic representation in Figure 2 can be 
overed from the following label sequence: 
lights/SF.DCity.pre from/SF.DCity.pre Seattle/SF.DCity.start 
F.ACity.pre Washington/SF.ACity.start D.C./SF.ACity.cont 

ase/SF.post”  
   Here the prefix “SF” in the labels indicates that the 
rance is a “ShowFlight” command. “SF.DCity.pre” indicates 

t the word is a preamble for a DCity slot. “SF.ACity.start” 
resents the first word of an ACity slot filler, “SF.ACity.cont” 
resents continuation of an ongoing ACity slot, and “SF.post” 
 post-command state that labels all the words after the last 
. Each label here corresponds to a state of the model, so 
tes” and “labels” will be used interchangeably. The model 
oses a couple of constraints on state transitions, namely a 

amble state must be followed by itself or by its 
responding slot’s start state; and any state must be followed 
a state in the same command (with the same prefix.) 
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         Formally, the problem can be formulated as assigning a 
state sequence 1s to an observation o  with  words with the 
help of a CFG parser that identifies all possible matches of CFG 
rules for slot fillers, as illustrated in Figure 3.  In this example, 
the model needs to label “two” as the “SF.NumOfTickets.start” 
(slot not shown in the simplified frames in Figure 1)
“Washington” as “SF.ACity.start,” “D.C.” as “SF.ACity.cont,” 
and the remaining words as the appropriate preambles. To do so, 
the model has to resolve several types of ambiguities: 
1. Filler/non-filler ambiguity, e.g., “two” can be the filler of a 

NumOfTickets slot, or the preamble of the ACity slot. 
2. CFG ambiguity, e.g., “Washington” can be CFG-covered 

as either a City or a State. 
3. Segmentation ambiguity, e.g., “[Washington] [D.C.]” for 

two Cities (or a State and a City) vs. “[Washington D.C.]” 
represents a single City. 

4. Semantic label ambiguity, e.g., “Washington D.C.” can fill 
either an “ACity” or a “DCity” slot. 

Figure 3. A CFG parser identifies all possible matches of CFG rules 
for slot fillers.

The desired state sequence 1s  should have maximum posterior 

probability 1( )p s o  according to model . Here undirected 
conditional graphical models are used for the posterior. They are 
of the following form: 

1 1
1( ) exp ( )

( )
p s s

z
o f o

o
    (1) 

where 1( )f os  is a vector of features that are functions of state 
sequence and observation;  is a vector of parameters that are 
the weights for the features; and 

1 1( ) exp ( )o f osz s

normalizes the distribution over all possible state sequences. For 
computational tractability, it is often assumed that 1s  forms a 
Markov chain and each element feature kf  in f is a function that 
only depends on two adjacent states, so 

( 1) ( )
1

1

1( )= exp ( )
( )

t t
k k

k t
p s f s s t

z
o o

o
    (2) 

The features we use for SLU in the conditional model include: 
1. Command prior features capture the likelihood a command 

being issued by a user, e.g., 
( 1) ( )

( )

ShowFlight ( )

1 if =0 Prefix( ) SF
     =

0 otherwise                        

PR t t

t

f s s t

t s

o

                                  (3) 

2. State Transition features capture the ordering of different 
slots in a command, e.g., 

( 1) ( )

( 1)

( )

SF.DCity,SF.ACity
( )   

1 if {SF.DCity.start, SF.DCity.cont}
        =     {SF.ACity.pre, SF.ACity.start}

0 otherwise                                                  

oTR t t

t

t

f s s t

s
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Unigram and bigram features capture the co-occurrence of 
words with preamble/post-command states, e.g., 

( 1) ( )
SF.DCity.pre,from

( )

( 1) ( )
SF.DCity.pre,departing,from

( 1) ( )

( )

1 if =SF.DCity.pre  = from;
      =

0 otherwise                                     

( )

1 if = =SF
      =

UG t t

t t

BG t t

t t

f s s t

s

f s s t

s s

o

o

o

1

.DCity.pre             
= departing  = from

0 otherwise                                       

t to o

                 (5) 

We include 
1 2,

BG
s w wf in the model only for those bigrams 

2 that co-occur with state s in a labeled training example. 
Previous slot’s context features with window size k capture 
the dependency of a slot’s interpretation on the preamble of 
the preceding slot, e.g., 

( 1) ( )

( 1)

( )

SF.ACity,SF.DTime,
( )

1 if {SF.ACity.start, SF.ACity.cont}    
{SF.DTime.start, SF.DTime.pre}

     
(SF.ACity, , 1, )                   

0 otherwise                     

PC t t

t

t

w
f s s t

s
s
w t k

o

o
                                 

    (6) 

Here (SF.ACity, , 1, )t ko  represents a word set that 
tains up to k words, which are not covered by any CFG 
s, and which appear in front of the longest phrases covered 

the CFG rule for the slot SF.ACity. The utility of the features 
 be illustrated with utterances “Flights from Seattle to 
ton at 3 pm” and “Flights from Seattle arriving in Boston at 
m.” In the first utterance, “3 pm” is a DTime (Departure 
e), while it is an ATime (Arrival Time) in the second one. 
 state transition features are not able to distinguish the two 

es, since the state sequences before “3 pm” are exactly same. 
ly features like 

SF.ACity,SF.DTime,arriving
PCf or 

SF.ACity,SF.DTime,to
PCf can 

p distinguish the two different cases. 
CFG chunk coverage features for preamble/post-command 
words capture the likelihood that a word covered by a CFG 
rule may not be part of a slot filler, e.g., 

1 ( 1) ( )

( )

( )

ShowFlight,City
( )

1 if  Prefix( ) SF                                
    covers(City, )  IsFiller( )

0 otherwise                                               

CC t t

t

t t

f s s t

s
s

o

o
          (7)

Here IsFiller(s) indicates state s is a slot filler state – either 
art state or a continuation state. The feature is activated when 
-filler labeled to  is covered by the City rule. 
CFG chunk coverage features for slot boundaries prevent 
errors like segmenting “Washington D.C.” into two 
different slots. They are activated when a slot boundary is 
covered by a CFG rule, e.g., 

2 ( 1) ( )

( )
1

( 1) ( )

ShowFlight,City
( )

1 Prefix( ) SF covers(City, )     
     isFiller( )  isFillerStart( )

0 otherwise                                              

CC t t

t t
t

t t

f s s t

s
s s

o

o             (8) 



3. Discriminative Training  
Each feature kf in the previous section is associated with a 
weight k  in Eq. (2). The parameters of the model can be 
optimized according to different objective functions, which 
yield the following discriminative training methods. 

3.1. Conditional Random Fields (CRFs) 

CRFs [4] maximize log posterior probability of training set label 
sequences given the observation: 

o

s o

o o( 1) ( )

1

log | ;

, , , log
i

k

i i
i

t t
k k i i i i

i f t

L P

f s s t Z
           (9) 

Here o s,i i  are the observation and the label sequence of the i-th
training example. Eq. (9) can be optimized with gradient-based 
optimization like stochastic gradient decent . Its gradient is 

l o
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t t
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                (10) 

which is the difference between the counts of feature kf from the 
labeled state-sequence/observation pairs and its expected count 
over all possible state-sequences given the observations alone. 
The expected count can be obtained with a forward-backward 
like dynamic programming algorithm.  
          Because L  is a convex function, a global optimum 
exists for the function. This property only holds for CRFs 
among the discriminative algorithms that we study in this paper. 

3.2. Perceptron

Given training data pair o s,i i , if the Viterbi state sequence 
vi for oi  is different from s ,i  perceptron learning [6] updates 

k  by adding the difference of the feature counts between label 
sequence si  and vi : s o v o' , , , , .k k k i i k i if t f t

         Perceptron learning can be viewed as using the difference 
of the log posterior probability between the reference state 
sequence and the Viterbi state sequence of mislabeled samples 
as the optimization objective function: 

o v
v

s o v o
:

' log | ; log | ;max
i i

i i i
i

L P P        (11) 

         The gradient of this function is the count difference used 
in perceptron parameter update. Therefore perceptron training is 
an online gradient-based optimization for Eq. (11). In this case, 
there is no need of dynamic programming for the expected 
feature counts. This speeds up model training significantly. 

3.3. Minimum Classification Error (MCE) 

MCE [7] directly minimizes the sequence label errors. Given 
training data o s,i i , a mislabeling measure is defined as 

v s
v o s olog | ; log | ;max

i
i i id P P             (12) 

which is the log posterior difference between the best incorrect 
state sequence and the correct reference state sequence. It is 
positive when the best incorrect sequence has higher posterior, 
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ative otherwise. A loss function then maps the mislabeling 
sure to a 0-1 continuum. Often a sigmoid function is used: 

1
''

1 exp
L

d
  (13) 

 gradient of the loss function is 
2''

1 d d

k k

L d
ee   (14) 

e
2

1 d dee  is a scaling factor that 

uces the influence of an example when its mislabeling 
sure is far away from (often set to 0) – in this case it is 
ly that the example is an outlier. This effectively makes the 
ning focus on the decision boundary, and requires a good 
ial parameterization – otherwise a large portion of training 
a may be treated as outliers. We pre-train the model with 
Fs or perceptron before MCE training.  In Eq. (14), other 
n the scaling factor, kd is very similar to the 

ative gradient of 'L  in perceptron learning, except that 
ceptron does not learn from correctly labeled data (corrective 
ning in ASR) while MCE keeps pulling probability mass 
 the posterior of the best incorrect state sequence to that of 

 correct sequence. The negation is due to the fact that the 
ective function needs to be maximized for perceptron but 
imized for MCE.  

. Large Margin (LM) 

 margin around the decision boundary for a sample o s,i i  is 
 log posterior difference between the correct state sequence 
 the best incorrect state sequence: 

v s
s o s o v o( , ) log | ; log | ;max

i
i i i i im P P       (15) 

 objective function in LM training is the minimum margin 
oss all training samples [8]: 

s ,o
s ,o

: 0
''' min

i i
i i

i m
L m    (16) 

her than fitting the model to training data, LM training draws 
ecision boundary that has the largest minimum margin to the 
ning examples. That makes the model more robust when the 
ning data is limited. 
In Eq. (16), examples with negative margin (i.e., examples 

t are mislabeled by the model) are treated as outliers and do 
 contribute to model optimization. This constraint can be 
xed with the introduction of a slate variable. In this paper we 
ply discard the examples with negative margins – this then 
uires that the initial model makes as few mistakes on the 
ning data as possible. For that reason, we pre-train the model 
h CRFs or perceptron training before LM training. 
To speedup training, LM learns from examples with margins 
ller than a threshold instead of only learning from the 
mple with the minimum positive margin. 

4. Experimental Results 
 ATIS 3 category A training set (~1700 utterances), as well 

 1993 test (470 utterances, with 1702 slots) and development 
0 utterances) sets are manually annotated for the experiment. 
chastic Gradient Decent (SGD) [9] is used for optimization. 
 development set are used to tune the training parameters 
 for stopping criteria for model training. The annotation 



contains sufficient semantic information to achieve near perfect 
database query results when SQL queries are generated from the 
annotation. The only few “errors” of query results are due to 
either reference mistakes or the misplacement of category D test 
utterances (interpretation depends on discourse) in category A. 

4.1. SLU Accuracy 

Table 1 compares the SLU slot error rate with different feature 
sets across different models. All feature sets include 6 command 
prior, 1377 state transition, and 14433 unigram features. FSet1 
also includes 290 previous slot’s context feature with window 
size 1, and 156 chunk coverage features for preamble/post-
command words. FSet2 includes additional chunk coverage 
features for slot boundaries, which share the weights with the 
chunk coverage features for preamble/post-command words. 
FSet3 adds on top of FSet2 58191 bigram features and uses 
previous slot’s context feature with window size 2. A detailed 
study of the impacts of different features can be found in [5]. 
Both MCE and LM training are initialized in two ways – 40 
iterations of perceptron training and 250 iterations of CRF 
training. At these iterations the initialization training methods 
accomplish close-to-optimal accuracy on the development set. 
The differences of slot error rates are not significant across 
different training methods except for perceptron learning, which 
has significantly higher error rates with FSet1 and FSet3, and 
perceptron-initialized MCE on FSet1. All the discriminative 
models significantly reduce the 5.0% slot error rate achieved by 
the generative HMM/CFG composite model.  
        While MCE and LM training improve the initial model 
trained with perceptron, they make little improvement over the 
initial model trained with CRFs.  

Table 1. SLU slot ins-del-sub error rates. 

Model FSet 1 FSet 2 FSet 3 
CRFs 4.00% 4.11% 3.88% 

Perceptron 4.35% 3.94% 4.47% 
Ptron/MCE 4.35% 3.94% 4.17% 
CRF/MCE 3.94% 4.11% 3.88% 
Ptron./LM 4.17% 4.11% 4.11% 
CRFs/LM 4.05% 4.11% 3.88% 

4.2. Training Speed 

Table 2 compares the training speeds of different algorithms. 
Perceptron takes much fewer iterations and much less time per 
iteration than CRFs. Since initialization takes most of the 
training time for MCE and LM, perceptron initialized MCE and 
LM training are also much faster than CRF-initialized training. 
MCE converges faster than LM after perceptron initialization. 
This may due to the fact that all data participate in MCE 
training, while only those with small positive margins 
participate in LM training. 

Table 2. FSet2 training time per iteration, number of 
iterations for convergence and total training time. 

Model Time/Iter. Iteration Total Time 
CRFs 4.8s 320 26 min. 

Perceptron 1.5s 40 1 min. 
Ptron/MCE 1.9s 40+10 1.6 min. 
CRFs/MCE 4.6s 250+30 22 min. 
Ptron/LM 1.8s 40+60 3 min. 
CRFs/LM 4.2s 250+30 20 min. 
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. Robustness to Data Sparseness 

le 3 compares the accuracy of different models when only 
t of the data is used for model training. CRFs and CRF-
ialized MCE/LM models are more robust to data sparseness 
n perceptron and perceptron-initialized MCE/LM models. 

Table 3. FSet2 Slot error rates of models trained with different 
amount of data. 

Model ¼ Data ½ Data ¾  Data All Data 
CRFs 5.64% 4.23% 4.17% 4.11% 

Perceptron 7.17% 5.82% 5.23% 3.94% 
Ptron/MCE 6.05% 5.52% 5.52% 3.94% 
CRFs/MCE 5.88% 4.41% 4.17% 4.11% 
Ptron/LM 6.64% 5.52% 3.82% 4.11% 
CRFs/LM 5.93% 4.41% 4.17% 4.11% 

5. Conclusions
 have introduced different discriminative training criteria for 
ditional models for SLU, and compared CRFs, perceptron, 
E and LM models in terms of accuracy, training speed and 
ustness to data sparseness. All the discriminative models 
omplished similar accuracy except for perceptron, which has 
ificantly higher error rates. CRFs are also more robust when 
 training data is available. However, perceptron and 
ceptron-initialized MCE and LM models are much faster to 
n, and the accuracy gap becomes smaller when more data are 
ilable. It is a good tradeoff to use perceptron-initialized 
E or LM if training speed is crucial for an application, or a 
e amount of training data is available. 
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