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Abstract

This paper describes an implementation of a discriminative acous-
tical model – a Conditional Random Field (CRF) – within a
Dynamic Bayes Net (DBN) formulation of a Hierarchic Hid-
den Markov Model (HHMM) phone recognizer. This CRF-DBN
topology accounts for phone transition dynamics in conditional
probability distributions over random variables associated with
observed evidence, and therefore has less need for hidden vari-
able states corresponding to transitions between phones, leaving
more hypothesis space available for modeling higher-level linguis-
tic phenomena such syntax and semantics. The model also has the
interesting property that it explicitly represents likely formant tra-
jectories and formant targets of modeled phones in its random vari-
able distributions, making it more linguistically transparent than
models based on traditional HMMs with conditionally indepen-
dent evidence variables. Results on the standard TIMIT phone
recognition task show this CRF evidence model, even with a rel-
atively simple first-order feature set, is competitive with standard
HMMs and DBN variants using static Gaussian mixture models on
MFCC features.
Index terms: Phone recognition, Dynamic Bayes Nets, Condi-
tional Random Fields, dynamic evidence model, phone recogni-
tion, acoustic modeling

1. Introduction
Phone recognition is hard to do well in a manner that allows lexi-
cal, syntactic, and semantic information to also be integrated. Of-
ten discriminative approaches that do well by themselves do not
extend well to larger models. This paper describes a prelimi-
nary implementation of a discriminative acoustical model within
a Dynamic Bayes Net (DBN) formulation of a Hierarchic Hid-
den Markov Model (HHMM) [1] phone recognizer. This acousti-
cal model has the interesting property that it explicitly represents
both formant trajectories and formant targets in its random vari-
able distributions: the former in the distribution P(ooot | ooot−1,Qt)
over the observed acoustical features ooo at frame t given each pos-
sible phone Q; and the latter in the distribution P(FOOO

t | ooot−1,Qt−1)
over binary ‘final state’ variables used in the DBN formulation
of HHMMs. This acoustical model was intended to function as a
component in a larger DBN-based interface that integrates phonol-
ogy, syntax, and referential semantics into a single recognition pro-
cess [2]. As a component in such a large system, the acoustical
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el was designed to avoid the need for large sets of context-
endent (e.g. triphone) values for hidden states at the phone
l, which are now common in state-of-the-art transcription sys-
s.

DBN-based Spoken Language Interface Model

acoustical model described in this paper is defined to function
in a structural language model, which explicitly represents
actic constituents and semantics associated with these con-
ents in a linear-time Dynamic Bayes Net (DBN) recognizer
This network is a variant of a Hierarchical Hidden Markov
el (HHMM) topology [1], which has been modified to encode
ite-stack right-corner parser.1 The model is factored at each
step into a finite number of stack elements, each of which has
ited number of conditional dependencies, allowing complex

erns to be learned from relatively small amounts of data. Once
ed, the model can be compiled into an efficient, unfactored
M with only one hidden random variable per time step, by
tiplying out all possible combinations of individual factored
om variable values, then adopting a beam-search strategy in
rbi decoding. Thus, any reduction of phonological (or syntac-
or semantic) uncertainty in this compiled hidden variable do-
n makes a correct interpretation less likely to fall off the beam.

The last two (Q and ooo) levels of this larger interface model
prise the phone recognizer described in this paper, with the
ence (ooo) and final-state (Fooo) variables comprising the acousti-
odel portion of this recognizer. The experiments described in

tion 3 evaluate this acoustical model and phone recognizer on
standard TIMIT phone recognition task, and therefore assume
exical- or higher-level input from above the phone level Q.
e that the random variables in the acoustical model are dis-
inative in that they are conditioned on evidence (which greatly

plifies decoding since only one input value need be considered
er than a whole distribution over a high-dimensional variable
ain), but they are not strictly discriminative in that they are
conditioned on hidden variables as well (albeit ones with rel-

ely small distributions over a relatively small phone set).

This is simply the left-right dual of left-corner parsing used in com-
design. The advantage of the right-corner formulation is that it uses

tack to store recognized constituents rather than goal constituents,
ing semantics associated with these constituents to be remembered

used as antecedents of intra-sentential co-reference in subsequent con-
ents.

September 17-21, Pittsburgh, Pennsylvania
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Figure 1: A graphical representation of the HHMM-based phone
recognition model at three time steps (speech frames) t-2, t-1, and
t, showing hidden random variables (Q) over phones or sub-phone
states at each frame, instantiated evidence random variables (ooo)
over short-time FFT spectra at each frame (each subsuming a spec-
trum of convexity indicators b1,2,3,...), and boolean final-state vari-
ables (FQ and Fooo) between frames, indicating whether lower-level
variables can serve as final states for higher-level variables. Thick
arcs represent ordinary conditional dependencies between random
variables. Thin arcs and factor nodes (opaque boxes) show factor-
specific dependencies in the evidence model, using an extension of
factor graph notation [4] to conditional models. The set of nodes
connected to a factor node by undirected edges represent maxi-
mal cliques of interdependent variables, conditioned on all of the
nodes with directed arcs into the factor node. Ellipses at the top
of the model denote optional interface with HHMM or other DBN
language models.

2. Discriminative Models within
Generative Models

The acoustical model described in this paper uses a dynamic ev-
idence model which, unlike conventional HMMs, conditions the
observed acoustical features at each time step on the acoustical
features at the previous time step, in addition to the current hidden
(phone) state (see Figure 1). This model maps high-dimensional
inputs to high-dimensional outputs. In order to make this map-
ping learnable, we 1) restrict our evidence to vectors of only bi-
nary ‘convexity’ features on frequency domain, which highlight
the formant tracks in the spectrum at various granularities; and 2)
parameterize our model as a Conditional Random Field [5], which
calculates probability distributions over ordered sequences (in our
case, an array of spectral peak indicators at the current time step)
given another ordered sequence as input (in our case, an array of
spectral peak indicators at the previous time step) as a product of
factors on local correlations at the same offset in the input and out-
put sequences. Probability distributions over output sequences are
then computed as a product of these factors normalized by the to-
tal probability of all possible output sequences, which can be cal-
culated very efficiently using a dynamic programming algorithm
similar to that used in HMM filtering. Conditional random fields
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a good model structure for this problem because the dynam-
of the speech signal are complex, and CRFs allow for heavy
lap of features without explicitly normalizing out that overlap.
One advantage of this approach is that it allows a dynamic
esentation of spectral information such as formant trajecto-
predicted by each phone, rather than a static representation

ikely formant configurations at various sub-states of a phone,
uring the intuition that phones are defined not so much by a
f formants being at a particular configuration of frequencies,

rather by traveling to a particular configuration of frequencies.
ilar approaches have been tried in connectionist models [6],
ch use Recurrent Neural Networks to simultaneously predict
nes and acoustical features at each time step given the acousti-
features at the previous time step. However, unlike most con-
ionist approaches, the DBN-based model described here also
its, in addition to formant trajectories, an explicit representa-

of formant targets in distributions associated with FOOO random
ables. These variables control whether lower-level Markov
models (in this case, the dynamic model of acoustical features)
reached a final state so that higher-level HMMs (in this case

nes) can transition. This is simply a straightforward extension
he DBN formulation of HHMMs to cover evidence models,
intuitively this is motivated by the fact that for a sequence to
onsidered an instance of a particular phone, it is not enough
the formants to be on their way to a particular configuration,
also have to eventually arrive there.

Conditional Random Fields

ditional Random Fields [5] are probabilistic models for struc-
d prediction which estimate probabilities of complex output
s as products of exponential weights on arbitrary overlapping

ures of evidence and output states, and then globally normal-
these products over the entire space of possible output states.

allows a CRF model to capture more long-distance depen-
cies (in this case, of widely separated peaks of first and second

ants in certain vowel sounds) than non-parametric conditional
els such as Bayes Net factorizations, which locally normalize
component feature over its overlap with other components.

This system uses a CRF to model probability distributions over
observed evidence variables (describing short-time FFT spec-
of a larger DBN model used to recognize phonemes. We cal-
te this conditional probability distribution as:

Pλ(ooot | ooot-1,Qt) =
exp

(
∑r,i, j λr,i, j fr,i, j(ooot-1,ooot ,Qt)

)
Z(ooot-1,Qt ;λ)

(1)

re ooot is the spectral evidence vector at time t (see following
ion), Qt is a realization of a subphone, and Z(ooot-1,Qt ;λ) is a

alization factor.
Note that this differs from many implementations that have

CRFs to model Pλ(Q1..T | ooo1..T ), where Q1..T are hidden
nes in a segment and ooo1..T are evidence in that segment. The
ose in our CRF model is not to discriminatively estimate the

ne, but to generate a conditional probability table for integra-
into the (generative) dynamic evidence DBN model described
e. In other words, most CRFs estimate the probability of hid-
states over a segment of time, whereas we estimate the proba-
y of generating the next observed evidence.
With probabilities conditioned on a hidden variable, this
ence-to-evidence model is not strictly discriminative - which
lly implies a large search space when the generating state is



Figure 2: Convexity indicators at r = 1 on sample spectrogram for
utterance fragment ‘. . . to helium film flow in the vapor . . . ’

unknown (i.e. from hidden state to evidence in an HMM). How-
ever, since the portion of the generating state due to the ooo ran-
dom variable is evidence, it is not necessary to iterate over each of
|OOO||Q| possibilities, but only |Q| (where | · | is the set size). Further-
more, since the generated state is also evidence, we only need to
calculate one instance ooot of equation 1. Therefore, we have added
a dynamic model to the evidence with little additional computa-
tional cost over a traditional HMM.

2.2. Feature Set

The features f (ooot−1,ooot ,Qt) used in this work were binary values
indicating the presence of ∩-convexities2 (loosely, ‘peaks’) in the
spectrum at any given time frame (see Figure 2). A ∩-convexity
over an interval of discrete data produced by some function g is
defined as

g[ci+(1−c) j] ≥ cg[i]+(1−c)g[ j] (2)

Here, i < j are both points in the domain of g; also, c ∈ [0,1] is an
arbitrary averaging factor such that ci+(1−c) j is an integer. The
implication is that the average value at the ends of an interval must
be less than the midpoint of any two points on the interval.

Adapting this definition for each frequency point in our spec-
tral data, we consider only the two nearest neighbors and introduce
a threshold γ ≥ 0 to reject convexities produced by noise. To ob-
tain features that encode characteristics of the data at a variety of
scales, we performed this convexity detection on different deci-
mated versions of the spectrum. We lowpass-filtered the spectrum
using 2r+1-tap triangle filters, then decimated by 2r,r = 0, ..,5,
producing the spectra gr . We then define binary convexity indica-
tors at each frequency bin i as follows:

br,i(g) =

{
1 if (gr[i]−gr[i−1])− (gr [i+1]−gr[i]) > γ
0 otherwise

(3)

The (also binary) features used in the CRF model are then defined
on paired triples of adjacent binary convexity indicators at the cur-

2The notation ∩-convex and ∪-convex help disambiguate confusing
mathematical definitions. In this paper, ‘convex’ and ‘convexity’ exclu-
sively refer to ∩-convex functions, so that formant ‘peaks’ are convex. Note
that this is considered concave, not convex, in e.g. optimization theory.
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and previous frame:

r,i, j(ooot-1,ooot ,Qt) =

⎧⎪⎨
⎪⎩

1 if j = 〈br,i(ooot-1), . . . ,br,i+2(ooot-1)

br,i(ooot), . . . ,br,i+2(ooot)〉

0 otherwise

(4)

result is a feature set that is sensitive to upward- and
nward- tending formant tracks at overlapping frequency bands
arious granularities.
Decimation on time signals typically reduces the necessary
dwidth; in our case, decimation to a spectral signal rejects the
e at higher cepstral quefrencies. The resulting spectra have
er resolutions, which are useful for detecting characteristics
formants or frication. Combining the data from different lev-
f spectra, we have ∑5

r=0 28−r −2(r +1) = 378 features in our
ure vector, where two endpoint convexities are undefined and
sed in each r level.
This choice of features departs from typical Mel-frequency
tral coefficient (MFCC) feature vectors for several important
ons. MFCCs aim to minimize the size of the feature vector
are known to produce good results with only about 12 cep-

l coefficients (about 60 features overall). To implement this,
mel-frequency spectrum is organized into up to 40 nonlinear
uency bins.
Our approach relies on the observation that the formants in
els increase or decrease monotonically over time towards
e target configuration - movements which should be observed

high resolution. These criteria do not hold for the mel-
uency spectrum, so we maintain a linear scale for frequency
. The linear scale also simplifies the hierarchy of the r level
tra, preserving more of the relevant data.
Another interesting point is that using convexity detection en-
es a more general notion of ‘peaks’ than local maxima, e.g. dis-
uishing formants which are close together in the spectrum, one
hich slightly dominates the other.
A final, most tangible benefit to using convexity detection is
binary-valued functions are compatible with the CRF model.
ough the number of features in MFCCs is small, the features
selves are continuous; this complicates the formulation of the
evidence model, which can tractably perform normalization

g dynamic programming only if there is a finite set of possible
es to store and share.

Final-State Variables

Murphy-Paskin formulation of Hierarchic HMMs defines
lean final-state variables at each hidden level d in the HMM
archy, which indicate whether the HMM at depth d can serve
final state for the HMM above it (at depth d − 1). This is

e in order to ensure that the higher-level HMMs in the hierar-
transition only when the lower-level HMMs have concluded.
model described in this paper extends this formulation by in-
ucing final-state variables at the evidence level as well, indi-
ng whether the observed evidence can serve as a final state
formant target) for the lowest-level hidden state above it (over

nes or sub-phones). In order to model formants that are sus-
ed at a target configuration, all sub-phone states are allowed to
-transition with non-zero probability.
These evidence-level final-state variables FOOO are implemented
ingle neuron models (equivalent to a degenerate CRF with a
-bit output sequence), which can be trained relatively quickly
g gradient descent. Since distributions over these final-state



random variables P(FOOO
t | ooot-1,Qt-1) are conditioned on (rather than

generating) the observed evidence ooo, they may use whatever fea-
tures of this evidence provide the most help, covering as many pre-
ceding frames as desired, as in any discriminatively trained model.
However, for simplicity (and because of limited target-annotated
data), the final-state models used in this implementation were de-
fined only on the convexity indicator spectra generated by the evi-
dence model at the immediately previous speech frame.

3. Evaluation
The test system was trained on the TIMIT corpus of phoneti-
cally transcribed continuous speech. Because it models phones
as culminating in particular formant targets, the dynamic evidence
model defined above dictates an approach to annotation that differs
from that used in the TIMIT corpus, in which sonorant phone la-
bels are placed around the formant target, with the formant target
in the center.

To make the TIMIT annotation compatible with our model, a
modified training corpus was constructed in which sonorant seg-
ments were shifted backward by half the length of the correspond-
ing segment in the original TIMIT transcript. These automatically
aligned phone targets were then manually checked and adjusted in
the DR1 subset of the TIMIT training set.

This need to model formants as monotonically increasing or
decreasing toward a target during each annotated phone segment
also motivated 1) a decomposition of diphthongs into start and end
phones (which were approximated to the existing set of monoph-
thong sonorants), and 2) the introduction of explicit stop onsets, in
which sonorant formants would converge in a predictable manner
before a plosive or other closure began.

After training on the formant-target-aligned DR1 subset and
testing on the entire TIMIT corpus, the CRF-DBN model achieved
phone recognition accuracy of 59% on the standard TIMIT test,3

with a 54% phone error rate (computed as the sum of substitutions,
insertions, and deletions). This compares to previously published
phone error rates for similar approaches of 47% [7] and 46% [8]
for context-independent phone recognition:

Method Corr Subs Del Ins PER
HMM(L&M) na na na na 42%
SFHMM(L&M) na na na na 46%
Sphinx(L&H) 64% 26% 10% 11% 47%
CRF-DBN 59% 28% 13% 13% 54%
LFHMM(L&M) na na na na 71%

4. Conclusion
This paper has presented a novel acoustical model in which proba-
bility distributions over acoustical evidence, abstracted as discrete
spectra of boolean convexity indicators, can be efficiently dynam-
ically estimated using CRFs given a hypothesized phone target
and any number of preceding observed spectra. Tractably estimat-
ing probability distributions over high-dimensional evidence vari-
able domains, using dynamic programming in a CRF, requires that
these domains be made discrete, weakening the sensitivity of the
model. In particular, the convexity indicator spectra described in
this paper make the model almost completely insensitive to relative
magnitudes of spectral peaks (limited to the convexity threshold γ).

3Except for the addition of stop onsets and the decomposition of diph-
thongs, as noted above.
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ertheless, the model described in this paper performs compet-
ly with conventional, static MFCC-based HMM approaches

er similar conditions, suggesting that it is mostly the location of
tral peaks, and not their relative magnitudes, which is phono-
cally salient. This model also has a number of potential advan-
s over MFCC-based HMM or RNN approaches:

• it is a well-formed probability model that can be extended
naturally to subsume more complex Hierarchic HMM or
other DBN language models without thresholding or ignor-
ing dependency assumptions;

• it allows both the evidence and final-state distributions
(P(ooot | ooot-1,Qt) and P(Fooo

t | ooot-1,Qt-1)) to be summarized
using a probability vector of linear size on |Q|, allowing
a clean separation of computation-intensive CRF inference
in a networked implementation;

• it accounts for phone transition dynamics in the evidence
model, and therefore may eliminate the need for sub-phone
states in the hidden variable model, leaving more hypothe-
sis space for higher-level linguistic phenomena such as syn-
tax and semantics;

• it is relatively transparent (and thus relatively easy to ex-
tend), in that parameter weights in the evidence (ooo) and
final-state (FOOO) models correspond to linguistic intuitions
about where formants should be, whereas parameters of
neural nets or Gaussian mixture models in static HMMs are
often relatively opaque to linguistic interpretation;

• and finally, the fact that this model achieves competitive
recognition results using a very different feature set from
MFCCs suggests that exploring a hybrid approach might
be an attractive avenue of research.
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