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ABSTRACT 
In this paper we describe a real-time speech recognition system 
developed for colloquial Iraqi Arabic. This system is currently 
used in our speech-to-speech translation system configured for 
bi-directional communication in English and Iraqi on a laptop. 
We present experimental results on Iraqi utterances from 
different speech-to-speech translation domains, and analyze the 
usefulness of acoustic and language modeling data from 
different domains. We highlight the improvements obtained by 
modeling techniques that are language-independent, such as 
lattice-based discriminative training and domain-biased 
language model interpolation. In addition, we report on initial 
experiments we have performed to address specific challenges 
posed by Iraqi for speech recognition such as absence of short 
vowels and multiple forms of glottal stop, or the hamza, in the 
written form.  
Index Terms:  Speech recognition, Iraqi Arabic, Maximum 
Mutual Information, Vowelization, Hamza Normalization 

1. INTRODUCTION 
There are far-reaching benefits for developing a two-way 
speech-to-speech translation system that facilitates bi-
directional communication over a language barrier. Under the 
DARPA TransTac and Babylon programs, many sites 
including BBN have developed speech-to-speech (S2S) 
translation systems that enable information exchange between 
an English speaker and a foreign language speaker. An early 
version of BBN’s prototype was developed for the 
medical/refugee processing domain and the target language 
was Levantine Arabic [1]. Since then our prototype has been 
significantly improved and has been configured for an entirely 
new language pair of English and colloquial Iraqi Arabic [2]. 

Success of two-way S2S translation systems is predicated 
on development and robust integration of multiple 
technologies such as English and foreign language automatic 
speech recognition (ASR), English to foreign language 
translation and vice-versa, and Text-to-Speech (TTS) synthesis 
in English as well as in the foreign language. This paper 
addresses the development of accurate, real-time foreign 
language ASR, specifically for colloquial Iraqi Arabic. 

Developing a speech recognition system for colloquial 
Iraqi Arabic (IA) poses significant challenges. The absence of 
short vowels in the orthography and the rich morphology of 
the Arabic language make it inherently hard for speech 
recognition.  Also, acquiring a large corpus of transcribed 
speech data is much harder for colloquial dialects than for 
Modern Standard Arabic (MSA). MSA is the dialect used in 
news broadcasts and has been researched for a few years now 
[3-4]. Unfortunately, pronunciations and orthographies of 
many words are significantly different between MSA and 
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lloquial IA.  Therefore, MSA-based speech recognition is 
t well suited to colloquial IA speech.  

This paper is structured as follows.  In Section 2, we 
scribe the characteristics of the Iraqi Arabic speech corpus 
t we have used to develop the recognition system.  Section 
s an overview of the BBN Byblos speech recognition system 
ed for this research. In Section 4, we report on experiments 
t highlight the importance of domain-specific data. In 
ction 5, we report on gains obtained from improved 
guage modeling.  In Section 6, we present improvements in 

oustic modeling.  Section 7 discusses experiments performed 
address the issue of short vowels and different forms of 
ttal stop in the Arabic orthography.  In Section 8, we 

scribe the configuration used in the TransTac 2006 March 
aluation and the results obtained on the offline evaluation 
ta.

2. COLLOQUIAL IRAQI CORPUS 
der the DARPA TransTac program, BBN has collaborated 
th DARPA, Appen PTY LTD., and Marine Acoustics Inc. 
AI) to collect and transcribe a large corpus of colloquial IA 

eech data (entirely from native speakers of IA) for three 
eech-to-speech translation domains: Medical/Refugee 
ocessing, Force-Protection (FP), and Civic Amenities.  A set 
 scenarios was generated, organized around the themes 
evant to the domain of interest.   Each scenario consisted of 
series of questions that were asked of the subject.  For 
ample, one scenario dealt with collecting biographical 
ormation using questions such as “What is your name”, 
hich city were you born in?, etc.  Using a tool BBN has 

veloped for such data collection, responses in Iraqi Arabic to 
 specified questions were collected for the three domains.  

e refer to this collection as the “1.5-way” collection, since 
 set of questions for which the responses were collected was 
ed.
All audio from the 1.5-way collection was recorded in the 

SWAV format at a sampling rate of 16 KHz and 16-bit per 
mple linear encoding.  The Medical and FP data were 
llected in Australia and Jordan, while the Civic Amenities 
ta was collected in Baghdad. A majority of speakers for all 
 collections were native speakers of the Baghdadi sub-
lect of IA, but there were a few speakers of native northern 

d southern sub-dialects. 
A different kind of data collection was jointly undertaken 

 Defense Language Institute (DLI) and IBM Corporation.  
is collection was more free-form with the participants 
ying the role of an English speaking subject matter expert, a 
ingual interpreter, and an Iraqi civilian. The collection 
vered the following scenarios: Traffic Control Point (TCP), 
vic Amenities, Force Protection, and Common Community 
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Interest (CCI). The audio from this collection was recorded on 
2 channels at a sampling rate of 22 KHz.  We refer to this data 
collection as the “2-way” collection. 

The audio data from all the domains was transcribed using 
MSA-based orthography in which the short vowels are not 
written.  We held out two sets of 9 hours of speech data from 
each domain as development and test set respectively.  In 
Table 1, we summarize the number of hours, number of 
utterances, number of words, and number of unique words for 
each domain.  A total of 215 hours of transcribed speech data 
was available for acoustic modeling, and it included 1 million 
words that can be used for language modeling.   

The average number of words per utterance for the 2-way 
datasets is about 2 times that of the 1.5-way set. Since the 2-
way responses were not directed answers to pre-determined 
English questions, they are more spontaneous and diverse in 
content than the 1.5-way data. 

Domain Set Hrs #Utts. #Words Unique 
Words

Train 165 209K 730K 28.5K
Dev. 6.3 7.5K 27.7K 5K1.5-way 

Test 6.5 7.4K 27.9K 5K
Train 31 27K 240K 20K
Dev. 2.2 1.9K 17.1K 4.3K2-way 

Test 2.5 2.1K 18.3K 4.5K
Table 1: Description of the colloquial Iraqi corpus. 

3. OVERVIEW OF THE ASR SYSTEM  
We used the BBN Byblos [5-7] speech recognition system for 
the experiments described in this paper.  The BBN Byblos 
recognition system uses phonetic hidden Markov models 
(HMM) with one or more forms of the following parameter 
tying: Phonetic-Tied Mixture (PTM), State-Tied Mixture 
(STM), and State-Clustered-Tied Mixture (SCTM) models.  
The states of each phonetic model are clustered based on the 
triphone or quinphone context into different “codebooks” 
(groups of Gaussian components).  The mixture weights are 
clustered using linguistically-guided decision trees.  

Decoding in the basic BBN Byblos system is performed in 
two passes [6].  The forward pass uses PTM or STM acoustic 
models and a composite set bigram language model (LM). The 
output of the forward decoding pass consists of the most likely 
word ends per frame, along with their partial forward 
likelihood scores.  The backward decoding pass then operates 
on the output of the forward pass using SCTM within-word 
acoustic models and an approximate trigram LM to either 
generate an N-Best list or a word lattice.  The word lattice or 
the N-best is typically rescored with a more detailed between-
word SCTM models. 

For the experiments described in this paper, we used STM 
models in the forward pass and the SCTM models in the 
backward pass.  Given our focus on real-time performance on 
COTS laptops we did not use crossword rescoring of word 
lattices or N-best lists. We also used shortlists [7] to reduce the 
time taken to compute the Gaussian distances for each feature 
frame. Grammar spreading [7] is used to reduce the search 
errors during beam pruning. 
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4. TRAINING WITH DOMAIN DATA  
r our baseline experiments, we used domain-specific STM 
d SCTM acoustic models estimated using Maximum 
kelihood criterion via the EM algorithm.  The features used 
r model estimation were the normalized energy and Mel-
equency Cepstral Coefficients (MFCC) together with their 
st and second derivatives.  RASTA normalization was 
rformed to improve robustness to channel variations.  

Since we did not have a dictionary of phonetic spellings 
r all the Iraqi words and also given that the orthographic 
resentation of the words in the transcripts did not contain 
 short vowels, we used the “grapheme-to-phoneme” 

proach introduced in [3] to automatically generate the 
onetic spellings.  The grapheme to phonemes mapping 
proach used a phonetic set consisting of 39 phones. 
e estimated domain-specific LMs using the acoustic training 
nscripts from each domain.  Witten-Bell (WB) smoothing 
s used to mitigate the effects of data sparseness.  The 
coding lexicons for each domain consisted of all the words 
served in the training data for that domain, which as shown 
Table 1 are 28.5K and 20K words.     

We decoded the test set from each of the domains using 
 domain-specific acoustic and LM pairs.  We used the 
ndard two-pass decoding described in Section 3. The word 
or rate (WER) obtained on the test set for each domain is 
mmarized in Table 2.  Given that there is significantly less 
ining data from the 2-way collection than the 1.5-way 
llection it is not surprising that the WER is worse on the 2-
y test set than the 1.5-way test set. Also, from Table 3 we 

n see that the out-of-vocabulary (OOV) rate and test set 
rplexity for the 2-way test set is much worse than the 1.5-
y domain.  
e WER in the off-diagonal elements of Table 2 shows that 
 performance is significantly worse for the “mismatched” 
ining and test condition than the matched condition.     

%WER raining 
ata 1.5-way 2-way Combined
.5-way 33.0 69.5 47.5
-way 64.8 41.1 55.4
verall WER with matched train and test 36.2

able 2: Decoding results for matched and mismatched test 
and train condition for domain-specific models. 

5. LM IMPROVEMENTS 
e explored the use of Kneser-Ney [8] (KN) smoothing and 
main-biased interpolation of the domain-specific LMs.  
rst, we re-estimated LMs for each domain using KN 
oothing.  Then, we decoded the test set for each domain 

ing domain-specific acoustic models and KN-smoothed LMs 
ined for that domain.  In Table 3, we compare the perplexity 
d WER obtained using KN-smoothed LMs with WB-
oothed LMs. As seen from the table, there is a modest 
provement in perplexity for KN smoothing but no 
nificant improvement in the WER.  We have found that KN 
oothing does result in an improvement in WER, if we build 

parate LMs for each sub-domain for the 1.5-way and 2-way 
ta.   Next, we generated LMs biased to each domain by 
erpolating the domain-specific KN-smoothed LMs, as well 
 additional 500K words from conversational Iraqi collection 



from a different effort. The interpolation weights were 
estimated on the held-out development set using perplexity as 
a minimization criterion.  While generating the interpolated 
LMs, we also expanded our lexicon to include all the 48.5K 
unique words observed in the training data and an additional 
3.5K words from the out-of-domain conversational Iraqi data.  
We decoded the test set for each domain using the domain-
specific acoustic models and the domain-biased interpolated 
LMs.  As shown in Table 3, the domain-biased interpolated 
LMs (denoted as “DomainName-Inter” in Table 3) outperform 
the domain-specific LMs. 

Test Set LM %OOV Perp. %WER 

1.5-way-WB 1.8 83 33.0
1.5-way-KN 1.8 73 33.01.5-way 
1.5-way-Inter 1.3 71 32.6
2-way-WB 6.0 302 41.1
2-way-KN 6.0 265 41.02-way 
2-way-Inter 3.6 241 40.3

Table 3: Comparing different LM estimation techniques for 
the matched train and test condition.  Domain-specific 

acoustic models were used for decoding the test set. 

6. ACOUSTIC MODELING 
IMPROVEMENTS

In this section, we report on improvements made to the 
acoustic models by incorporating data from both 1.5-way and 
2-way domains, and lattice-based discriminative training.  For 
experiments reported in this section, we merged the 1.5-way 
and 2-way test sets to generate a “combined” test set.  We also 
generated an interpolated “global” LM optimized on the 
combined development set from 1.5-way and 2-way 
development sets. 

We estimated STM and SCTM “global” acoustic models 
in the ML framework with 196 hours of data from both 1.5-
way and 2-way data collections. Next, we decoded the 
combined test set with different acoustic models: global model, 
1.5-way model, and 2-way model. All decoding experiments 
used the interpolated LM optimized on the combined 
development set.  As shown in Table 4, the global ML acoustic 
model significantly outperforms the domain-specific acoustic 
models. The global SCTM model consisted of 175K 
Gaussians, whereas the 1.5-way and 2-way data had 147K and 
35K Gaussians respectively. 

Acoustic Model %WER  
1.5-way ML 43.6
2-way ML 41.6
Global ML 38.1

Global MMI 34.2
Global MMI w/ lattice regeneration 33.7

Table 4: Comparison of different acoustic models on 
combined test set. 

To further improve our acoustic models, we estimated 
acoustic models using the Maximum Mutual Information 
(MMI) criterion [9].  First, we generated lattices for the entire 
196 hours of acoustic training data by decoding with the global 
ML models and a bigram LM trained with Witten-Bell 
smoothing on the same training data.  Next, we used the global 
ML model as an initial estimate and performed 6 iterations of 
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 Extended Baum-Welch (EBW) [9] algorithm to update the 
ans and variances of Gaussians in the model.  We trained 

ing unigram LM probabilities in the lattices and also used I-
oothing [9] to avoid over-training.  
We decoded the combined Iraqi test set with MMI models 

m different iterations using the interpolated LM optimized 
 the combined development set.  We found that the MMI 
del from the 5th iteration resulted in the best WER.  As 

own in Table 4, the 5th iteration MMI model resulted in a 
ER of 34.2%, i.e. a 3.9% absolute reduction in the WER 
er the ML model.  We further experimented with a variant 
 the conventional MMI training by regenerating lattices with 
 5th iteration MMI model and performing additional 
rations of MMI training using the regenerated lattices. 
coding with the MMI model after three iterations of training 
th regenerated lattices resulted in a WER of 33.7% on the 
mbined Iraqi test set, which is 4.4% absolute better than 
coding with the global ML model.   

We also decoded test sets from each domain with the MMI 
del trained with lattice regeneration and domain-biased 
erpolated LM.  In Table 5, we have summarized the overall 
provements over the baseline domain-specific results 
esented in Section 4.  The best results (Overall WER of 
.7%) were obtained by decoding with MMI models trained 
 the entire Iraqi training corpus and domain-biased 
erpolated LM trained for each domain.  The overall 
coding time with the above configuration was 0.6xRT (times 
l-time) on a 2.8 GHz Xeon CPU.   It is possible that a better 
ult can be obtained by training domain-specific MMI 
dels given the diversity in the data collection and we plan to 
estigate that approach in the near future. 

coustic Model Language Model %WER 
(Overall) 

omain-specific ML Domain-specific 36.2
lobal MMI Domain-biased-

interpolated 
32.7

able 5: Summary of improvement in WER over baseline 
decoding with models trained on domain data only. 

7. IRAQI-SPECIFIC MODELING  
 this section, we report on experiments we have performed to 
dress the specific challenges offered by the Iraqi language. 
e report on results obtained by normalizing different forms 
 glottal stops.  In addition, we report on experiments that 
mpare the effect of using multiple “vowelized” 
onunciations for Iraqi words as opposed to using a 
aightforward grapheme-to-phoneme mapping.  

Hamza Normalization: Hamza ( ), which represents the 
ttal stop, can be written above or below the alif ( ) or on 
aw ( ), yaa (  ), or can appear by itself. The use of madda 
er alif (  ) and the interchanging of  alif maksuura ( ) for 
a ( ) is also common in written Arabic. The writing 
nventions are not stringent, and hence different forms of the 
me word may appear with or without the hamza in the 
nscriptions. Therefore, while measuring WER we usually do 
t penalize the system, when the recognized word contains a 
ferent hamza than the one in the reference orthography.  
We trained acoustic and language models with three 

mmon forms of the hamza – the hamza over alif, the hamza 
der alif, and madda over alif normalized to one common 
aracter alif in the training transcriptions. This change 



reduced the dictionary size from 52K words to 49K words 
after the normalization. In Table 6, we summarize the results 
obtained by normalizing hamzas. Although, significant 
improvement was obtained by normalizing hamza for ML 
estimated models, no improvement was obtained following 
MMI.  

%WER 
ASR Models Normalization 

in WER ML MMI 

Un-normalized No 39.7 35.5

Un-normalized Yes 38.1 33.7

Hamza Norm. Yes 37.4 33.9

Table 6: Results on overall test set with un-normalized and 
hamza normalized models. 

Vowelization: The absence of short vowels in the 
orthography is a severe problem for speech recognition 
systems and has led to grapheme-to-phoneme as a popular 
approach to mitigating the problem.  Recently, the Linguistic 
Data Consortium (LDC) has provided a pronunciation lexicon 
for approximately 13K Iraqi Arabic words from the 2-way 
TransTac dataset. There are on the average 1.5 pronunciations 
per word in the lexicon provided by LDC. Though this lexicon 
does not cover our complete dictionary, we attempted to use 
the LDC lexicon to build acoustic models for our system.  

The first experiment we performed was to estimate ML 
acoustic models using the “vowelized” dictionary consisting of 
multiple pronunciations for each word.  For fair comparison, 
we trained acoustic models with vowelized and un-vowelized 
dictionary only on the acoustic data that contained the 13K 
words from the LDC lexicon (75 hours of speech).  In case of 
the training with vowelized dictionary, we introduced 5 more 
phonemes to model the short vowels. Pronunciation 
probabilities were also estimated for each pronunciation. 

In Table 7, we show the effect of the two models by 
comparing the WER on a subset of the test set which did not 
contain any OOV words with respect to the 13K dictionary.  
From the table, we see that using the vowelized form of 
pronunciation dictionary did not result in an improvement over 
the grapheme-to-phoneme pronunciation dictionary.  We 
believe this is due to lack of training data for different 
pronunciations.   

 Acoustic Model Configuration %WER 

ML STM and SCTM w/ unvowelized dict. 42.3
ML STM and SCTM w/ vowelized dict. 43.2

Table 7: Comparison of acoustic models trained using 
grapheme-to-phoneme dictionary with vowelized dictionary 

using 75 hrs of training data. 

In our next experiments, we will explore combining the 
vowelized dictionary with the grapheme-to-phoneme 
dictionary to estimate acoustic models for the complete 
system.  We will also explore discriminative training using 
Minimum Phone Error (MPE) criterion which is better suited 
to this problem than the MMI criterion. 
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8. EVALUATION SYSTEM  
e Iraqi ASR system used in BBN’s Speech-to-Speech 
nslation system for the recently concluded March 2006 
ansTac live evaluations was configured with the “global” 
MI STM and SCTM models and “global” LM described in 
ction 6. The processing speed was faster than real-time on a 
 GHz Pentium M laptop. The same ASR configuration was 

ed for decoding the offline evaluation data.  The offline data 
nsisted of a combination of speech recorded in clean and 
isy conditions from various scenarios such as “Person of 
terest”, “Intelligence Screening”, “Medical”, etc.   

In Table 8, we summarize the WER obtained on 2-way and 
-way test conditions with and without MLLR based speaker 

aptation. Speaker adaptation results in a 20% relative 
provement in the WER.  

%WER 
Decoding 

1.5-way 2-way 

Un-adapted 28.7 28.9

Adapted 23.0 22.6

Table 8: WER obtained on the TransTac March 2006 
offline Iraqi evaluation data. 

9. CONCLUSIONS AND FUTURE WORK 
 this paper we have presented a detailed investigation of the 
pact of various modeling techniques in the context of Iraqi 
abic speech recognition.  We were able to derive large gains 
 using standard techniques such as use of more data, 
criminative acoustic modeling, and speaker adaptation.  

eliminary experiments with Iraqi Arabic specific modeling 
hniques such as hamza normalization and use of a 
welized lexicon did not result in significant improvements, 
t are worth pursuing further.  
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