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Abstract

We describe a system for model based speech separation which
achieves super-human recognition performance when two talkers
speak at similar levels. The system can separate the speech of two
speakers from a single channel recording with remarkable results.
It incorporates a novel method for performing two-talker speaker
identification and gain estimation. We extend the method of model
based high resolution signal reconstruction to incorporate tempo-
ral dynamics. We report on two methods for introducing dynam-
ics; the first uses dynamics in the acoustic model space, the second
incorporates dynamics based on sentence grammar. The addition
of temporal constraints leads to dramatic improvements in the sep-
aration performance. Once the signals have been separated they
are then recognized using speaker dependent labeling.
Index Terms: speech separation, Algonquin, Iroquois.

1. Introduction
One of the most challenging speech recognition tasks is recogniz-
ing speech when two speakers talk simultaneously. The ICSLP
2006 Speech Separation Challenge [1] gives us an opportunity to
expand earlier work on source model based signal reconstruction
[2] and demonstrate the importance of temporal dynamics at an
acoustic and sentence level. Using both acoustic and sentence level
dynamics our system produces astonishing results1. The system,
which we call Iroquois, is often able to extract two utterances even
when the same speaker is talking at the same pitch in the original
recording.

The Iroquois system comprises three components: a speaker
identification and gain estimation component, a signal separation
component and a speech recognition system. Section two de-
scribes the source models, section three describes the speaker iden-
tification component, section four describes how the acoustic and
grammar constraints were incorporated, section five describes the
SDL recognizer and the last section describes the experiments and
results.

2. Source Models and Likelihood Estimation
The speech separation challenge involves recognizing speech in
files that are mixtures of two component signals. Each of the com-
ponent signals, xa[t] and xb[t] for speaker a and b are modeled
by a conventional continuous observation hidden Markov model
(HMM) with Gaussian mixture models (GMM) for representing
the observations. The main difference between our model and that

1Audio examples and further research are available at
http://www.research.ibm.com/speechseparation

of a
spec
a, th
p(x

the
nal.
as

whe
pha

obse

p(

2.1.

Unl
evol
eval
step

serv
to a
a w
prox
squa
for x

mod
uati
New
atio
Qua
This
app

Gau
d �
the

f

of Σ
sian
p̂(x

gate
to m
wise

INTERSPEECH 2006 - ICSLP

97
Speech Recognition:
ion Challenge System

, S. Rennie, R. Gopinath

arch Center
10598, USA

standard recognizer is that observations are in the log-power
trum domain. Hence, given an HMM state sa of speaker
e distribution for the log spectrum vector xa is modeled as

a|sa) = N(xa; μsa , Σsa).
The model for mixed speech in the time domain is (omitting
channel) y[t] = xa[t]+xb[t] where y[t] denotes the mixed sig-
We approximate this relationship in the log spectrum domain

p(y|xa,xb) = N(y; ln(exp(xa) + exp(xb)),Ψ) (1)

re Ψ is introduced to model the error due to the omission of
se. Notice that this relationship is nonlinear.
The joint distribution of the two sources, their state and the
rvation is

y,xa,xb, sa, sb)=p(y|xa,xb)p(xa|sa)p(xb|sb)p(sa)p(sb). (2)

Fast Likelihood Estimation

ike a traditional recognizer, we must take into account the joint
ution of the two signals simultaneously. Hence we need to
uate the joint observation likelihood p(y|sa, sb) at every time
.
Algonquin [2] can be used to accurately approximate the ob-
ation likelihood. Algonquin uses the Newton-Laplace method
pproximate the joint posterior computed from Eqn. (2) with
eighted Gaussian. Once the joint distribution has been ap-
imated, p(y|sa, sb) can be found, as well as minimum mean
red error (MMSE) or maximum a posteriori (MAP) estimates
a and xb.

We used 256 component Gaussian mixture models (GMM) to
el the acoustic space of each speaker. In this case, the eval-

on of p(y|sa, sb) requires the evaluation of 2562 or over 65k
ton-Laplace or max estimates. In order to speed up the evalu-

n of the joint observation likelihood, we employed both Band
ntization of the component GMMs and joint-state pruning.
gave three orders of magnitude speedup over the brute force

roach.
Band quantization involves approximating each of the D
ssians of each model with a shared set of d Gaussians, where

D, in each of the 319 frequency bands. It relies on
use of a diagonal covariance matrix, so that p(xa|sa) =
N(xa

f ; μf,sa , σf,sa), where σf,sa are the diagonal elements

sa . The mapping Mf (si) associates each of the D Gaus-
s with one of the d Gaussians in frequency band f . Now
a|sa) =

f
N(xa

f ; μf,Mf (sa), σf,Mf (sa)) is used as a surro-
for p(xa|sa). Under this model the d Gaussians are chosen
inimize the KL-distance D(p(xa|sa)||p̂(xa|sa)), and like-
for sb. Then in each frequency band, only d × d, instead
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of D×D combinations of Gaussians have to be evaluated to com-
pute p(y|sa, sb). In our case, d = 8 and D = 256, so this saves
over three orders of magnitude of computation time.

Only a handful of sa, sb combinations are required to ade-
quately explain the observation. By pruning the total number of
combinations down to a smaller number we can speed up MMSE
estimation of the components signals as well as the temporal in-
ference. In the experiments reported here, we pruned down to 256
combinations.

The max approximation [3] provides an efficient if less accu-
rate approximation to the joint observation likelihood. The max
approximation assumes p(y|sa, sb) = pxa(y|sa) if the mean
μa of xa is larger than the mean μb of xb and p(y|sa, sb) =
pxb(y|sb) otherwise.

We relied on the max approximation for speaker identification
and gain estimation and the Algonquin method for signal sepa-
ration. The effect of these speedup methods on accuracy will be
reported in a future publication.

3. Speaker Identification and Gain
Estimation

We developed an efficient model-based method for identifying the
signal sources (e.g. speakers or noise types) that are present in
a mixed signal as well as the gain of each source. This method
avoids explicitly considering all possible source combinations and
facilitates the utilization of source-specific, gain normalized mod-
els during the the source separation phase.

The algorithm is based upon a very simple idea: identify and
utilize frames that are dominated by a single source to determine
what sources are present in the mixture. The output of this stage
is a short list of candidates. The combination of candidates on
the short-list that maximizes the probability of the mixture under a
gain adaptive approximate EM procedure is then selected.

Despite the fact that this model will not generally be able to
explain frames that are not dominated by a single source, we model
the signal mixture for each processing frame t as generated from
a single source class c, and assume that each source class is de-
scribed by a mixture model:

p(yt|c) =
g sc

πscπgN (yt; μsc + g,Σsc + Γ) (3)

where the gain parameter g has been modeled as a discrete vari-
able with domain {6, 3, 0,−3,−6,−9} (the models and data were
AGC normalized) with prior πsg taken as uniform, Γ is the covari-
ance of the observation noise which is assumed to be zero mean,
and πsc is the prior probability of state s in component class c. 2

To form a useful estimate of p(c|y) we apply the following
simple algorithm:

1. Compute the frame belief as the normalized likelihood of c
given yt for each frame

byt
(c) = p(yt|c)/

c′

p(yt|c
′). (4)

2. Approximate the component class likelihood by

p(y|c) =
t

φ(byt
(c)) · byt

(c), (5)

2
Γ was set to zero for the two-talker case, and estimated using low-

power frames in the stationary noise case.
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where φ(byt
(c)) is a confidence weight that is assigned

based on the structure of byt
(c), defined here as

φ(byt
(c)) =

1 maxc byt
(c) > γ

0 otherwise
(6)

where γ is a chosen threshold. 3

3. Compute the component class posterior as usual via:

p(c|y) ∝ p(y|c)p(c)

Therefore frame beliefs byt
(c) with high entropy, that are

well explained by any component in the concatenated source
el, will be discarded. On average, the model can only explain
of the data frames. Therefore we use only those frames that

e model well to estimate what sources are in the mixture.

6 dB 3 dB 0 dB -3 dB -6 dB -9dB All
T 100 100 100 100 100 99 99
G 97 98 98 97 97 96 97
G 99 99 98 98 97 96 98
ll 99 99 99 98 98 97 98

le 1: Speaker identification accuracy (percent) as a function of test
ition and case on the SSC two-talker test set, for the presented source
tification and gain estimation algorithm. ST-Same Talker, SG-Same
der, DG-Different Gender.

Given a short-list of finalists chosen according to p(c|y) as
puted above, we identify the present components by apply-
a max-based approximate EM algorithm to find the gains and
tify the most probable speaker combination.
Table 1 reports the speaker identification performance ob-
ed by the described algorithm on the SSC two-talker data. Here
percentage of files where both speakers are identified as one of
two most probable source classes are reported. We can see
on average over all conditions the two speakers are identified
ectly 98% of the time.

Dynamic Speech Models and Joint Space
Inference

traditional speech recognition system, speech dynamics are
ured by state transition probabilities. We took this approach
incorporated both acoustic dynamics and grammatical dynam-
ia state transition probabilities.

Acoustic dynamics

apture acoustic level dynamics, which directly models the dy-
ics of the log-spectrum, we estimated transition probabilities
een the states of the 256 component GMM models for each
ker. The acoustic dynamics of the two independent speak-
re modeled by state transitions p(sa

t+1|s
a
t ) and p(sb

t+1|s
b
t) for

ker a and b respectively. Hence, for each speaker c, we esti-
ed a 256 × 256 component transition matrix Ac.

Grammar dynamics

grammar dynamics are modeled by grammar state transitions,
c
+1|v

c
t ), which consist of left-to-right phone models. The legal

γ was set to 0.5 for all reported results.



word sequences are given by the Speaker Separation Challenge
grammar [1] and are modeled using pronunciations that map to
three-state context-dependent phone models. The sequences of
phone states for each pronunciation, along with self-transitions
produce a Finite State Graph (FSG). The state transitions derived
from this graph are sparse in the sense that most state transition
probabilities are zero.

For a given speaker, the FSG of our system has 506 gram-
mar states v. We then model speaker dependent distributions
p(sc|vc) that associate the FSG states to the speaker dependent
GMM model states. These are learned from training data where
the grammar state sequences and GMM state sequences are known
for each utterance.

To combine the acoustic dynamics with the grammar dy-
namics, it was useful to avoid modeling the full combination
of s and v states in the joint transitions p(sc

t |s
c
t−1, vt). In-

stead we make a naive-Bayes assumption to approximate this as
zp(sc

t |s
c
t−1)p(sc

t |vt), where z is the normalizing constant.

4.3. 2D Viterbi search

The Viterbi algorithm estimates the maximum likelihood state se-
quence s1..T given the observations x1..T . The complexity of the
Viterbi search is O(D2 · T ) where D is the number of states and
T is the number of frames. For producing MAP estimates of the 2
sources, we require a 2 dimensional Viterbi search which finds the
most likely joint state sequences sa

1..T and sb
1..T given the mixed

signal y1..T as was proposed in [4]. Surprisingly, this 2D Viterbi
search is of complexity O(D3 · T ), and not O(D4 · T ). By ex-
ploiting the sparsity of the transition matrices and pruning the ob-
servation likelihoods, our implementation of 2D Viterbi search is
faster than the Algonquin likelihood computation.

4.4. Methods of Inference

In our experiments we performed inference in three different con-
ditions: GMM inference, acoustic dynamics, and grammar dynam-
ics. The GMM inference has no temporal dynamics and source
estimates E(xa|y) and E(xb|y) are inferred using posteriors of
Eqn. (2) and marginalizing over states sa, sb (see [2] for details).

In the acoustic dynamics condition, the exact inference al-
gorithm uses the 2D Viterbi search, with acoustic temporal con-
straints p(st|st−1) and likelihoods from Eqn. (2), to find the most
likely joint state sequence s1..T .

In the grammar dynamics condition we use the model of
section 4.2. Exact inference is computationally complex be-
cause of the large number of joint grammar and acoustic states,
(va × sa) × (vb × sb). Thus we perform approximate inference
by alternating the 2D Viterbi search between the cartesian product
sa × sb of the acoustic state sequences and the cartesian product
va × vb of the grammar state sequences. When evaluating each
state sequence we hold the other chain constant, which decouples
its dynamics and allows for efficient inference. Details of various
alternative approximate inference strategies for this model will be
explored in future publications.

Once the maximum likelihood joint state sequence is found
we can infer the source log-power spectrum of each signal and
reconstruct them [2].
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5. Recognition using Speaker Dependent
Labeling (SDL)

e the two signals have been separated, we decode each of the
als with a speech recognition system that incorporates SDL.
We employed MAP training [5] to train speaker dependent
els for each of the 34 speakers. The performance of the
ker dependent models and the baseline gender dependent la-

ng system (GDL) is shown in Table 2. We added colored noise
he same nature as found in the development set to generate
training data. We were able to obtain much better results in

noisy conditions as seen in Table 2.

Theory of SDL

ead of using the speaker identities provided by the speaker ID
gain module, we followed the approach for gender dependent
ling (GDL) described in [6]. As will be shown below for the
e case, this technique provides better results than if the true
ker ID is specified.
Each speaker is associated with a set of 39 dimensional cep-
m domain acoustic Gaussian mixture models. We have the
wing estimate for the a posteriori speaker probability at a par-

lar frame xt:

γc,t =
s∈Sc

πsN (xt; μs,Σs)

c′ s∈Sc′
πsN (xt; μs,Σs)

.

e the two components signals have been extracted, we assume
the speaker identity is constant over many frames. However,
does not make the assumption that each file contains only

speaker. Instead, an estimate for the speaker probability for
ker c at time T can be defined as

pc(T ) =

T

t=0

(1 − α)αtγc,T−t. (7)

estimate (7) has the advantage that it can be efficiently com-
d in an online fashion as

pc(T ) = αpc(T − 1) + (1 − α)γc,T−t.

effective window size for the speaker probabilities is given by
1 − α), and can be set to match the typical duration of each
ker. We chose α/(1 − α) = 100, corresponding to a speaker
tion of 1.5 s. The online a posteriori speaker probabilities are
e to uniform even when the correct speaker is the one with the
est probability. We can remedy this problem by sharpening
probabilities to look more like 0-1 probabilities. The boosted
ker detection probabilities are defined as

πc(T ) = pc(T )β/
k

pk(T )β. (8)

used β = 6 for our experiments. During decoding we
now use the boosted speaker detection probabilities to give
e-dependent Gaussian mixture distribution: GMM(xT ) =

πc(T )GMMc(xT ). As can be seen in Table, 2 the SDL sys-
outperforms the oracle system4.

Besides the oracle condition, no prior knowledge of the speaker ID or
e condition was used in generating the results.



System Noise Condition
clean 6dB 0dB -6dB -12dB

HTK 1.0 45.7 82.0 88.6 87.2
GDL-MAP I 2.0 33.2 68.6 85.4 87.3
GDL-MAP II 2.7 7.6 14.8 49.6 77.2
oracle 1.1 4.2 8.4 39.1 76.4
SDL 1.4 3.4 7.7 38.4 77.3

Table 2: Word error rates (percent) on the noisy development set. The
error rate for the “random-guess” system is 87%. The systems in the table
are: 1) The default HTK recognizer, 2) IBM–GDL MAP–adapted to the
speech separation training data, 3) MAP–adapted to the speech separation
training data and artificially generated training data with added noise, 4)
Oracle MAP adapted Speaker dependent system with known speaker IDs,
5) MAP adapted speaker dependent models with SDL

6. Experiments and Results
The Speech Separation Challenge [1] involves separating the
mixed speech of two speakers drawn from of a set of 34 speakers.
An example utterance is place white by R 4 now. In each record-
ing, one of the speakers says white while the other says blue, red
or green. The task is to recognize the letter and the digit of the
speaker that said white.

We decoded the two component signals under the assumption
that one signal contains white and the other does not, and vice
versa. We then used the association that yielded the highest com-
bined likelihood.

Log-power spectrum features were computed at a 15 ms rate.
Each frame was of length 40 ms and a 640 point FFT was used
producing a 319 dimensional log-power-spectrum feature vector
(the DC component was discarded).
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Figure 1: Word error rates for the a) Same Talker, b) Same Gender and c)
Different Gender cases.

Figure 1 shows results for the 3 different conditions. Human
listener performance [1] is shown along with the performance of
the SDL recognizer without separation, GMM without dynam-
ics, using acoustic level dynamics, and using both grammar and
acoustic-level dynamics.

The top plot in Figure 1 shows word error rates (WER) for
the Same Talker condition. In this condition, two recordings from
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6 dB 3 dB 0 dB -3 dB -6 dB -9dB total
31 40 47 43 45 57 43.8
9 9 10 12 14 23 12.9
9 7 9 12 16 25 12.9

l 17.3 19.8 23.3 23.2 25.9 36.1 24.3

le 3: Word error rates (percent) for grammar and acoustic constraints.
ame Talker, SG-Same Gender, DG-Different Gender. Conditions

re our system performed as well or better than human listeners are
ed.

same speaker are mixed together. This conditions best illus-
s the importance of temporal constrains. By adding the acous-
ynamics, performance is improved considerably. By combin-

grammar and acoustic dynamics, performance improves again,
assing human performance in the −3 dB condition.
The second plot in Figure 1 shows WER for the Same Gender
dition. In this condition, recordings from two different speak-
of the same gender are mixed together. In this condition our
em surpasses human performance in all conditions except 6
nd −9 dB.
The third plot in Figure 1 shows WER for the Different Gender
dition. In this condition, the system surpasses human perfor-
ce in the 0 dB and −3 dB conditions. Interestingly, temporal

straints do not improve performance relative to GMM without
amics as dramatically as in the same talker case, which un-
cores the importance of the short-time signal characteristics in
condition.
The best performance of the Iroquois system, which uses both
mar and acoustic-level dynamics, is summarized in Table 3.
system surpassed human lister performance at SNRs of 0 dB

ugh −6 dB on average across all speaker conditions. Averag-
across all SNRs, the system surpassed human performance in
Same Gender condition.
Future research will address some of the limitations of the task
model. We do not yet know if the proposed techniques gen-

ize well to more realistic task conditions, such as unknown
kers, less constrained grammars, and more natural mixing

ditions. The model also scales poorly with more than two
kers, and such scenarios would call for further approxima-
s. Based on these initial results, however, we envision that
r-human performance over all conditions is within reach for

speech separation challenge.

7. References
Martin Cooke and Tee-Won Lee, “Interspeech speech
separation challenge,” http : //www.dcs.shef.ac.uk/
∼ martin/SpeechSeparationChallenge.htm , 2006.

T. Kristjansson, J. Hershey, and H. Attias, “Single microphone source
separation using high resolution signal reconstruction,” ICASSP, 2004.

S. Roweis, “Factorial models and refiltering for speech separation and
denoising,” Eurospeech, pp. 1009–1012, 2003.

P. Varga and R.K. Moore, “Hidden markov model decomposition of
speech and noise,” ICASSP, pp. 845–848, 1990.

J.-L. Gauvain and C.-H. Lee, “Maximum a posteriori estimation for
multivariate Gaussian mixture observations of Markov chains,” IEEE
Transactions on Speech and Audio Processing, vol. 2, no. 2, pp. 291–
298, 1994.

Peder Olsen and Satya Dharanipragada, “An efficient integrated gen-
der detection scheme and time mediated averaging of gender depen-
dent acoustic models,,” in Proceedings of Eurospeech 2003, Geneva,
Switzerland, September 1-4 2003, vol. 4, pp. 2509–2512.


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Ramesh Gopinath
	------------------------------

