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Abstract

We consider the task of discriminating speech and non-speech in
noisy environments. Previously, Mesgarani et. al [1] achieved
state-of-the-art performance using a cortical representation of
sound in conjunction with a feature reduction algorithm and a non-
linear support vector machine classifier. In the present work, we
show that we can achieve the same or better accuracy by using
a linear regularized least squares classifier directly on the high-
dimensional cortical representation; the new system is substan-
tially simpler conceptually and computationally. We select the reg-
ularization constant automatically, yielding a parameter-free learn-
ing system. Intriguingly, we find that optimal classifiers for noisy
data can be trained on clean data using heavy regularization.
Index Terms: speech detection, discriminative methods, regular-
ization.

1. Introduction
The task of categorizing sound is important in many applications,
including speech recognition, audio retrieval and robotics. Moti-
vated by our interest in humanoid robots, we consider the task of
discriminating speech from non-speech. The task is difficult for
several reasons: the robot’s environment is frequently noisy and
reverberant, the sound source may be far from the robot, and the
robot contains many motors and fans.

A key decision in any auditory application is the representa-
tion of sound. Recently, there has been substantial activity and
progress in understanding how sound is represented in mammalian
cortex. We consider a model by Shamma and colleagues, that is
inspired by neurophysiological knowledge of the early and central
stages of the mammalian auditory system [2]. In this model, each
short (8 ms) time-slice is represented as a three-dimensional ten-
sor in frequency, rate and scale space. The model generally uses
128 frequencies, 12 rates and 5 scales, so each time-slice is 7,680
dimensional.

This model was used by Mesgarani et al. to discrimi-
nate speech from non-speech [1]. In their application, the dis-
crimination was done in two stages: dimensionality reduction
was performed using a higher-order singular value decomposition
(HOSVD) [3], an analog of the SVD that respects the tensor nature
of the cortical representation, and classification was done with a
Gaussian support vector machine. The resulting system compared
favorably to other well-regarded systems [4, 5]. The system had
several tunable parameters: the number of components to keep was
determined separately for the scale, rate, and frequency subspaces,
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the bandwidth of the SVM Gaussian kernel was chosen.
In the present work, we show that optimal performance can
btained by using a regularized linear classifier directly in the
ical space. We achieve the same accuracy as HOSVD/SVM,
our new method is conceptually and computationally much
ler, and has no tunable parameters — there is a single reg-

ization parameter λ, but this parameter is found automatically.
ause the algorithm is so simple, we are able to test a very large
e of regularization parameters, and make an interesting obser-
n about clean and noisy sound.

In Section 2, we briefly describe the cortical representation.
ion 3 presents the regularized least squares algorithm, and
s how to effectively determine the regularization constant λ

g leave-one-out cross-validation; we believe these ideas are
widely disseminated in the acoustical machine learning com-
ity. Section 4 presents experimental validation of the RLS
oach. Section 5 compares our algorithm to the HOSVD/SVM
a computational standpoint. We discuss implications in Sec-

6.

2. Cortical Representation of Sound
trotemporal modulation features are extracted from an au-

ry model inspired by psychoacoustical and neurophysiologi-
findings in the early and central stages of the auditory path-
. The early stage converts the sound waveform into an au-
ry spectrogram — a time-frequency distribution along a tono-
c (logarithmic frequency) axis. The second (cortical) stage per-
s a two dimensional wavelet transform of the auditory spec-

ram, providing an estimate of its spectral and temporal mod-
on content. It is computationally implemented by a bank of
dimensional (spectrotemporal) filters that are selective to dif-

nt spectrotemporal modulation parameters ranging from slow
ast rates temporally (in Hertz), and from narrow to broad
es spectrally (in Cycles/Octave). The spectrotemporal im-
e responses (or “receptive fields”) of these filters are centered
ifferent frequencies along the tonotopic axis. The basic math-
tical formulation of the model can be summarized as:

ycochlea(t, f) = s(t) ∗ hcochlea(t, f)

yan(t, f) = gcochlea(∂tycochlea(t, f)) ∗ μhaircell

y(t, f) = max(∂fyan(t, f), 0) ∗ μmidbrain

r±(t, f ; ω, Ω) =

y(t, f) ∗tf [STRF±(t, f ; ω, Ω)]
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where s(t) is the sound, ycochlea(t, f) is the cochlear filter out-
put, yan(t, f) are auditory nerve patterns, y(t, f) is the auditory
spectrogram and r±(t, f ; ω, Ω) is the cortical representation. The
sign of r specifies the direction of spectrotemporal modulation: −
for downward, + for upward patterns. The modulation represen-
tation of sound is a 4-dimensional function of time (t), frequency
(f ), rate (ω) and scale (Ω). One can think of each point in the
spectrogram as having a 2-dimensional rate-scale representation,
r(tc, fc, ω, Ω) which indicates the modulation strength at all ω’s
and Ω’s for that channel and instant. If we average the time di-
mension on a given duration of sound, we obtain the average rate-
scale-frequency representation in the given time window.

The cortical representation is summarized in Figure 1. For
more details of the representation see [2].

Figure 1: The cortical representation of sound.

3. Regularized Least Squares
Given data points (x1, y1), . . . , (xn, yn), where xi ∈ Rd and
yi ∈ {0, 1}, and a kernel function k : x × x → R, the regular-
ized least squares (RLS) algorithm solves the optimization prob-
lem: [6, 7]:

min
c∈Rn

1

2
||Kc − y||22 +

λ

2
c

t
Kc.

λ is a regularization constant controlling the tradeoff between fit-
ting the training set accurately and finding a function with small
norm, and K is the kernel matrix defined by Kij = k(xi, xj).
Linear RLS arises when k(xi, xj) = xt

i · xj is used as the kernel
function. In this case, the solution c to the optimization problem
defines a classifying hyperplane w via

w =

nX

i=1

cixi.

Differentiation and simple algebra shows [7] that we can find the
coefficients c by solving the linear system

(K + λI)c = y.

The constant λ must be determined somehow. Defining the ith
leave-one-out (LOO) error to be the error made on the ith training
point when it is removed from the data set, a classifier is built on
the remaining n−1 data points and tested on xi, the RLS algorithm
has the remarkable property [8, 7] that the vector of LOO errors is
given by

c

diag(K + λI)−1
.

One of the most computationally useful properties of RLS is that
finding both c and the LOO vector for a large number of λs re-
quires almost no additional work compared to that required for a
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le λ, if we utilize the eigendecomposition of the kernel matrix

K = V ΛV
T
,

re Λ is diagonal and V V T = I . Once we have obtained this
ndecomposition (in O(n3) time), we can find c, the LOO er-
and w for a given value of λ in O(n2) time by exploiting the
ion

(K + λI)−1 = (V ΛV
T + λI)−1

= (V (Λ + λI)V T )−1

= V (Λ + λI)−1
V

T
.

diagonal matrix (Λ + λI) is trivially invertible in O(n) time,
it is not difficult to show that we can compute (K + λI)−1y
e diagonal of (K + λI)−1 in O(n2) time (computing all of
λI)−1 explicitly would require O(n3) time, but this is never

ed.)
The RLS algorithm makes it feasible to examine the behavior
e system over a wide range of values of the regularization

meter λ. In this work, we make use of 400 different values of
garithmically spaced between 10−12 and 1012. In practice,

g all 400 λ’s increases the running time by less than a factor
ree compared to using a single λ.
There exist specialized methods to perform linear RLS in
d + d2) memory and O(nd2) time, and these methods are
luable when n >> d. Here, d > n, so it is more effective to
the standard nonlinear kernel machinery described here.

4. Experiments
study the performance of RLS with an experiment. We mostly
w the experimental setup of [1]. In that work, the authors
pared their system, which used a higher-order singular value
mposition (HOSVD) for dimensionality reduction followed
support vector machine with a Gaussian kernel, to other sys-
, and found that the HOSVD/SVM system achieved state-of-

art performance compared to well-regarded multifeature [4]
voicing-energy [5] based methods.
The data set consists of speech and non-speech examples; the
speech examples are drawn from several databases. For each
ple, the average cortical representation over one second from
enter of the sound file is used to represent the sound as a point
7,680 dimensional space. We considered both clean data, and
mixed with white noise at varying SNRs. For further details
e experimental setup and the databases, see [1].
We use the same training and testing sets as [1]. However,
ound files in [1] were recorded at differing frequencies, while
ownsampled all sounds a priori to 8 kHz (the lowest record-

frequency used). Additionally, in [1], the same piece of white
e was mixed repeatedly with different sound files. We use a
ue white noise sample for each sound sample (we use the same

te noise sample for each sound sample at differing SNRs). The
bers here are therefore not directly comparable to those in [1]
nformal experiments, reusing the same white noise across all
ds yielded approximately 50% fewer errors).
In addition to the RLS algorithm described here, we reran the
rithms from [1] (the HOSVD/SVM, as well as [1]’s implemen-
ns of the multifeature and voicing-energy methods) on the re-
d data. Table 1 summarizes the results. All the classifiers used
uce real-valued predictions, and by varying a threshold, we



SNR (dB)
Algorithm -4 -8 -12 -16 -20

Multifeature, Noisy Trained .13 .25 .40 .46 .48
Voicing-Energy, Noisy Trained .12 .16 .26 .47 .53
HOSVD/SVM, Clean Trained .04 .10 .30 .49 .53
HOSVD/SVM, Noisy Trained .03 .03 .08 .17 .33

RLS, Clean Trained, LOO-λ .02 .05 .16 .38 .48
RLS, Clean Trained, Best -λ .03 .05 .08 .16 .37
RLS, Noisy Trained, LOO-λ .02 .03 .08 .19 .34
RLS, Noisy Trained, Best-λ .02 .04 .08 .15 .35

Table 1: Summary of Results. All numbers are equal error rates.
“Best λ” is for comparative purposes; as it assumes an ability to
select the right λ for each task.

can produce an ROC (or DET) curve [9]. For easy comparability
of a range of algorithms across a range of SNRs, we report equal
error rates (EERs), the point on the ROC (or DET) curve where
the rate of errors on each class is equal.1 We note that the testing
set contains only 651 points, and small jitters in the predictions
can have moderately large effects on the EERs, so we cannot put
too much stock in small differences in EERs. That said, we make
the following observations:

• The multifeature and voicing energy systems degrade very
badly in the noisier conditions, relative to the cortical based
systems, even when they were trained and tested on noisy
data.

• When trained on noisy data, the HOSVD/SVM and RLS
systems both yield very good (and similar) performance.

• The noisy RLS LOO-λ and noisy RLS best-λ (best λ is the
performance we would achieve if we could magically pick
the optimal λ for each SNR) are quite close over most SNRs
tested, indicating that the LOO procedure for picking λ is
working well.

• The LOO-λ classifier trained on clean data is stronger than
the HOSVD/SVM system trained on clean data, but not
nearly as strong as the noisy trained systems.

• On the other hand, the best-λ classifier trained on the clean
data performs as well as the noisy trained systems.

This last point is quite intriguing. Figure 2 shows the EER of the
clean trained classifiers across the range of λs, for varying SNRs.
As the SNR decreases, the appropriate value of λ increases, and
at very low SNRs, the best λ is several orders of magnitude (note
the logarithmic x-axis) larger than the best λ for clean data. Our
ability to easily sweep λ as described in Section 3 is a key enabling
technique for making observations of this sort.

5. Algorithmic Comparison of HOSVD/SVM
and RLS

The RLS system is substantially faster than the HOSVD/SVM sys-
tem at both training and testing time. On a 3.4 GHz Pentium IV
system, the HOSVD takes 37 seconds (assuming fixed HOSVD
parameters) and the SVM takes 157 seconds (including time to ten-
fold cross-validate the Gaussian kernel parameter). On the other

1In informal examination, the ROC curves rarely crossed (if one classi-
fier gave a substantially lower EER than another, it had better performance
at all operating points), so we feel justified in using EERs for comparison.
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re 2: EER of clean trained predictors across a range of λ’s, at
rent SNRs.

, on a slower 3.0 GHz Pentium IV system, the RLS system
ires 31 seconds to form the eigendecomposition of the kernel
ix, and about .15 seconds to train and compute the leave-one-
error for a single λ: we compute 400 classifiers for a wide
e of λ in 92 seconds.
At testing time, the HOSVD projects the 128 by 5 by 12 di-
sional tensor down to a 140 dimensional vector, and the dis-
e between this vector and the 81 (140 dimensional) support
ors generated by the SVM algorithm. In contrast, the RLS
od simply converts the input tensor to a vector and takes a dot
uct, and is approximately 10 times faster. For larger datasets
ore complicated tasks, the advantage of the linear RLS will

ven greater — the number of support vectors for the nonlinear
will grow linearly in the number of data points (assuming we

ot totally separate the data, we will have a fraction of the data
esponding to the Bayes error rate as support vectors), while
inear RLS will always output a single hyperplane.
The HOSVD/SVM system requires choosing the number of
s vectors in three different dimensions for the HOSVD (this
done once for [1], and we reused those values in experiments
his paper), a regularization parameter C for the SVM (this was
ys set to 1), and a Gaussian width σ for the SVM kernel (this
timized by 10-fold cross-validation for each noise condition).

the other hand, the RLS system requires only a single regu-
ation parameter λ, and this is chosen automatically by LOO
s-validation as described in Section 3, so the system is essen-
y parameter-free.

6. Discussion
have shown how a simple linear classifier can be used to ob-
state-of-the-art performance on a speech detection task. We
eve the same accuracy as the HOSVD/SVM system, but our
em is much simpler both conceptually and computationally.
We showed that we can use clean training data to build ac-
te classifiers for very noisy sound signals. We find this quite
guing, compared to the situation in speech recognition, where
frequently necessary to directly train on noisy data to achieve



noise robustness. Compared to the optimal classifiers for clean
sounds, the optimal clean-trained classifiers for noisy sounds had
much larger values of λ, and were therefore smoother functions.
Indeed, when we visually inspected the clean-trained classifiers
with large λ (another advantage of using linear models is that we
can plot them in exactly the same way we plot the cortical rep-
resentations themselves), we find that they look like “average”
speech signals, and are representing the “coarse structure” of the
cortical representation of speech. On the other hand, the classi-
fiers with smaller λ (which are optimal for clean speech) do not
have an immediately visible interpretation, and are classifying the
distinction between speech and non-speech at a much finer scale.

We should not be too surprised that a linear classifier performs
as well as a nonlinear classifier. All kernel learning algorithms,
of which SVM and RLS are examples, construct functions in a
linear feature space. When nonlinear kernels such as the Gaus-
sian are used, the feature space is implicit, and high or infinite
dimensional. However, the cortical representation itself is already
an explicit nonlinear “lifting” of the auditory spectrogram into a
high-dimensional space: a linear function on the cortical represen-
tation is a nonlinear function on the spectrogram. More generally,
we believe that explicitly choosing a nonlinear (but computation-
ally tractable) feature space, and explicitly working in that feature
space, is frequently an excellent way to achieve state-of-the-art
tradeoffs between accuracy and computational demands.
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Figure 3: A woman says “...encourage ’em to ex...”: borderline
speech.

Although these results are promising, there are many direc-
tions to explore. Figure 4 shows an example that is consistently
classified as speech by our systems. To human ears, the sound is
clearly not speech. Nevertheless, the visual representation seems
indistinguishable from some speech signals (compare Figure 3 and
4). It seems plausible that by averaging the cortical representation
over a full second, we have thrown away valuable dynamic infor-
mation; future work should attempt to incorporate it, although this
will lead to much more computationally challenging problems.

The detector seems good enough to be incorporated onto a hu-
manoid robot, which usually operates at an SNR of around 10 dB
(although SNR is itself a vague notion for nonstationary sounds,
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Figure 4: A dog barks: borderline non-speech.

the noise the robot is exposed to is certainly not white). The
ent implementation of the cortical model is written in Matlab,
is several times slower than realtime, but we believe a realtime
lementation is possible. We intend to incorporate the system
our robot in the near future.
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