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Abstract

In this paper, we generalize the training error definitions for mini-
mum classification error (MCE) training and investigate their im-
pact on recognition performance. Starting the conventional MCE
method, we discuss with three issues in regard to training error def-
inition, which may affect the recognizer performance and need to
be extensively studied. We focus our discussions on the first two
aspects in this paper. We re-visit the fact that the objective func-
tion in MCE training can be formulated into an equivalent form
for maximizing the “posterior probability” of the corresponding
training units. Based on the framework of the generalized poste-
rior probability (GPP) [1], we design experiments to demonstrate
effects about different training units and different constraints on
segmentation boundaries for the MCE training. We also provide a
performance analysis to illustrate our generalization for both phone
recognition and word recognition tasks based on the wall street
journal (WSJ0) [2, 3] database.
Index Terms: MCE, GPP, WSJ0.

1. Introduction
Discriminative training (DT) methods [4][5] have led to suc-
cessful results in various of automatic speech recognition (ASR)
tasks. Fundamentally, three popular discriminative training meth-
ods have been proposed; they are the maximum mutual infor-
mation (MMI) method [6][7], the minimum phone/word error
(MPE/MWE) method [8] , and the minimum classification error
(MCE) method [4][5]. We have witnessed great effort in the whole
ASR community to compare, unify, and generalize these criteria.
Recent research indicates that it is possible to formulate the dis-
criminative training methods under a unified function form with
substantial generalization [5]. We choose the MCE criterion as the
main investigation objective, because it is the one which elaborates
the most direct connection between the Bayes decision rule and the
speech recognition performance (i.e., empirical error rate). The
MMI method roots in maximizing the mutual information between
two probabilistic models. The MPE/MWE method shares a similar
objective function with the MCE method, and can be viewed as a
customization of the MCE criterion.

Following the convention of [4], the MCE method can be for-
mulated:

1. Define the performance objective and the corresponding task
evaluation measure;

2. Specify the target event (i.e., the correct label), competing
events (i.e., the incorrectly hypothesis results from the recog-
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nizer) , and the corresponding models (a good organization
of training events is also critical);

. Construct the objective function and set hyper-parameters;

. Choose a suitable optimization method to obtain model pa-
rameters.

an “event" could be any user-specified speech units (e.g.
es, syllables, words, etc.). The unique feature of MCE is that
bjective function in step 3 is chosen to be the same as the per-
ance objective in step 1. With this principle, we contemplate
re flexible generalization starting from the MCE method to

iscriminative criteria, in which not only the functional forms,
lso all relevant components are organized together based on a
ugh and systematic consideration. For instance, MCE should
nger be confined as a criteria only for isolated training or a

g-based method, while the training level (string-based/word-
d/phone-based,etc.) is viewed only as a part of the system con-
ation instead of a critical differentiation factor between criteria.
is paper, only the first item which is also the most fundamental
s discussed due to limited space. This work is the first of an ex-
ve generalization of the MCE training criterion. The purpose
is paper is to provide a discussion in regard to generalization
e training error definitions for the MCE method, Furthermore,
xperiments are conducted in order to demonstrate the effect
stinct error definitions rather than aiming at an optimal system
lopment.
s we have mentioned, the MCE training ties the classic Bayes

sion rule and the task evaluation performance. Bayes decision
basis of pattern recognitions. It teaches us the best decision is

ne with the maximum posterior probability. In particular, for
ch recognition, the recognized speech unit should maximize
ollowing equation:

Wi = arg max
i

P (Wi|Xi) =
P (Xi|Wi)P (Wi)

P (Xi)
(1)

re P (Xi|Wi) is the acoustic model and P (Wi) is the language
el. By its definition, the MCE training is directly minimizing
mpirical training errors, which is the performance measure.
r in the next section, we can see that this operation is consis-
with maximizing the posterior probability. Estimating the total
ability P (Xi) is normally very hard in ASR problems because
is impossible to exhaust the probability space. Wessel et al.

as proposed a method to estimate the posterior probability for
ech unit using a reduced search space (i.e., word graph). In
more relaxed estimation was introduced as “generalized pos-

r probability” (GPP). Though the original motivation for these
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work is to propose a new confidence measure for recognized hy-
potheses, a method was shown a path for applying the MCE to large
vocabulary continuous speech recognition (LVCSR) [5]. Note that
the term “posterior probability” is interpreted here for the pattern
recognition problem which may not be identical to the conventional
distribution estimation problem. That is, training based on “maxi-
mizing posterior probability” in speech recognition only means to
raise the ranking of the labeled speech units.

The rest of paper is organized in the following way. In section
2, we will present some issues in error definition generalization. We
will construct a relationship between the MCE and maximization
of the posterior probability for a specific speech unit in section
3. A brief review of the definition of GPP is also provided in
this section. The experimental results that illustrate the effect of
different training units are exhibited in section 4. The conclusion
of this paper is drawn in section 5 and the future work is proposed,
too.

2. Error Definitions Generalization in MCE
Training

There are three important issues in defining an error: the level of
training, the speech unit boundaries, and error types in regard to
the unit alignment (substitution/insertion/deletion).

2.1. Error Definition in Different Level of Training

There are a number of training units in different levels which can be
used to measure recognizer performance. Thus, to count training
errors. Practically, a sequence of observations in ASR are indexed
by frame, which is the smallest unit in calculating features. There-
fore, we may list a set of speech units bottom-up: state, phoneme,
syllable, word, phrase, string/sentence/utterance. This list may
not be optimal or exhaustive, but it is a good demonstration for
the flexibility of a hierarchical MCE training structure. For each
level, an error is defined as the number of discrepancies between
the manually transcribed units and the recognized units. Any level
of models can be formed from a basic level. For example, the
speech unit to construct acoustic models for English recognition
usually is phoneme, hence the higher level models such as word
level training can be carried out by simply concatenating phoneme
models. On the other hand, a lower level training like state level
is conducted by aligning phoneme sequences into state sequences.
Later in this paper, three levels of training units (word/phone/state)
will be discussed.

2.2. Error Definition for Speech Unit Boundaries

The principle of MCE training is built upon the identification of the
numerically competitive situation between the transcribed target
event and the competing events. In continuous speech recognition
tasks, it is in general difficult to obtain a set of competing events with
identical boundaries with the transcribed event. A relaxed boundary
constraint was successfully applied in discriminative training [5].
For example, at each time frame t in a word graph, where new word
hypotheses are to be started, not only the word hypotheses starting
at exactly this frame are allowed to be one of the competing events,
but also those starting in time interval [t − δt, t + δt] need to be
counted as well. We analyze MCE formulations with both strict
and relaxed boundaries in the following.
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Error Definition in and with Unit Alignment

ntinuous speech recognition, recognition errors can be clas-
d into three types in terms of their position in the alignment
een the recognized string and the transcription. They are dele-
errors, insertion errors, and substitution errors. These three
s of errors have been considered in conventional speech recog-
n problems. The original MCE method aims at minimizing the
titution errors. However, if we re-interpret the ASR problem
detection problem, the deletion/insertion/substitution errors

be respectively viewed as miss errors, false alarm errors, and
/false-alarm errors happening together. Now we can directly
mize all errors under the framework of detection theory. This
e of the essence of the detection-based ASR [10], which would
iscussed separately.

MCE Training and Generalized Posterior
Probability

MCE Objective Re-formulation

heart of the MCE method is to embed the empirical training
into a function that is easy to optimize. Let us recall the error
ting function:

i, Wi) =
1

1 + exp[−γ(−gi(Xi, Wi) + Gi(Xi, Wi)) + θ]
(2)

re Xi is the ith training observation, and Wi is the correspond-
abel. gi and Gi are log likelihood of the labeled model (tar-
odel) and the wrongly recognized model (competing model).

n we set γ = 1 and θ = 0, The above function can be rewritten

li(X; λ) = 1 − PC(Xi, Wi)
PC(Xi, Wi) + PW (Xi, Wi)

(3)

= 1 − P (Xi|Wi)P (Wi)∑
∀Wj

P (Xi|Wj)P (Wj)
(4)

= 1 − P (Wi|Xi) (5)

hich PC denotes the probability computed using the labeled
t model, and PW are probability from competing models. This
ation indicates how the MCE method associates the empirical
ing errors with the Bayes decision rule.

Generalized Posterior Probability (GPP)

], a confidence measure using GPP for recognized word is
osed. When the notion of word level decision is broadened to
r levels, the MCE training criterion allows integration of the
sponding GPP. As well known, a word graph bears a richer
h space than an N-best list. In this paper, all training experi-

ts are conducted in the context of word graphes. Assume there
labeled word sequence W M

1 = w1, w2, . . . , wM with obser-
n XT

1 = x1, x2, . . . , xT . We represents a word wi starting
time s and ending at time t as [wi; s, t]. Hence, the posterior

ability can be written as [9]

i; s, t]|XT
1 ) =

∑

∀n,[wn;sn,tn]=[wi;s,t]

P α(Xt
s|wi)P β(wi|wi−1)

P (XT
1 )

(6)
re wn is a hypothesized word, and P (wi|wi−1) is the language
el. α and β are acoustic and language model scale factors,



respectively. [wn; sn, tn] = [wi; s, t] implies the recognized word
has same identity and exact starting and ending time with the labeled
one. This definition has one obvious drawback. In recognition, the
word might be correctly recognized but the time registration s and t
of that hypothesis often does not satisfy the exact match. Since the
word content is more important than the timing information (unless
it negatively impacts the recognition decision on the neighboring
segments), it is unnecessary to impose the strict constraint upon
word boundaries at this stage. Therefore, the GPP is defined in [1]

PG([wi; s, t]|XT
1 ) =

∑

∀n,wn=wi

P α(Xt
s|wi)P β(wi|wi−1)

P (XT
1 )

when [sn, tn] ∩ [s, t] �= ∅ (7)

This equation relaxes the timing constraint, indicating that once the
hypothesis identity matches the labeled one, we will count it as a
correct recognition as long as there is a reasonable segmentation
overlap. Of course, the constraint of timing can be tightened some-
how in order to achieve different recognition error definitions in
regard to boundaries. As we have mentioned this is the general-
ization for speech unit boundaries in error definitions. Based on
the derivation above, we can conclude the objective function to be
maximized under the MCE/GPP framework as

FGPP (Λ) =
1
K

K∑

k=1

N∑

i=1

PG([wi; s, t]|XT
1 ) (8)

where K is the number of total training tokens. We can use either
the GPD method [4] or the EBW method [5] to optimize the objec-
tive function (8). In this paper, the GPD method is employed for
simplicity. The update equations for all parameters can be found
in [4].

3.3. Two Implementation Issues

One issue for graph-based MCE training is that we need to exclude
the spoken word sequence from the recognized word graphes [11].
It is not appropriate to physically remove any utterance hypothesis
because some words in that sequence may be a part of the other word
sequences. Hence, the total likelihood of the graph is calculated
using forward-backward method [9] then the contribution of the
correctly recognized word sequences are subtracted. The other
issue is to select the acoustic and language model scale factor α
and β. In [1] some techniques in searching the optimal values for
them are proposed. In this paper, we apply some heuristic values
that prepared in advance for simplicity.

4. Experiments and Results
4.1. System Description

The experiments were conducted on the WSJ0 database
[2, 3]. The baseline recognizer followed the large vo-
cabulary continuous speech recognition recipe using HTK
(see http://www.inference.phy.cam.ac.uk/kv227/htk/) , which was
based on representing training classes using continuous density
Gaussian mixture hidden markov models (CDHMM). A word in-
ternal context-dependent tri-phone set is formed with 7,385 phys-
ical models and 19,075 logic models. All models are represented
by 3-state strict left-to-right HMMs, with 8 Gaussian mixture com-
ponents per state. These models were trained first by Maximum
Likelihood (ML) method implemented by the HTK toolkit. The
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riments were then carried out by comparing the performance
stems trained using different MCE criterion.

e generated feature vectors for all 7,077 utterances by 84
kers in the training set of the WSJ0 corpus. Each feature vector
2MFCC+12Δ+12Δ2 and 3 log energy values so that total 39
res are used. The feature generation process is also applied on
ow’92 evaluation set with 330 utterances by 8 speakers. The
6 recognition lexicon are employed, which contains 126,834
s. The word graphes are generated using HTK toolkit, too. At

t 3 tokens are allowed to survive at the same time during word
h generation. Other baseline system details can be found in
.

The MCE training criterion are tested on three aspects based on
PP framework. First, we conducted experiments on different

ing levels. Second, we investigated the effect of selecting
rent constraint for the word boundaries. Third, we presented
vestigation of the effects for different training constraints, i.e.,
rent word graphes. In each set of experiments, the other two
rs are keeping identical for consistency.

Experiment Results

. MCE on different training levels

first experiments are investigating the effects of different train-
evels for the MCE method. There are three popular training
s for word recognition experiments: the state level, the phone
and the word level. At each specific level, the GPP is com-

d at that level and the GPD method is used for optimization. For
ple, the word level training means we first calculated the GPP

ach word in the graph, then all parameters of that word model
pdated based on the GPP value. Assuming the spoken word
pies the time interval [s, t], We allow any words falling into the
interval [s−δt, t+δt] are counted into the calculation of GPP.
is paper, we are using a relative constraint δt = 1/3(t − s).
word boundaries are read from the word graph files, and the
e boundaries and state boundaries are set using Viterbi align-

t. To generate the word graph, a bigram language model is
ied. The word insertion penalty and the language model scale
r are set to be −14.0 and 5.0, respectively.

In table 1, we can see that the phone-level training achieved
tly better performance than the the word level and state level
ing. The reason for this observation is that the time interval
tate level training when calculating GPP may be too short, and
ime interval for word level may be too long. Too short interval
d lead over-optimization. Too long interval contains too many
meters so that the effect for each parameter is weakened when
imizing the corresponding GPP.

e 1: Word Error Rate (WER) and Sentence Error Rate (SER)
SJ0-eval using different training levels

Training level WER SER

Baseline 8.41 57.88
Word-level 8.05 56.97
Phone-level 7.96 56.67
State-level 8.02 56.97



4.2.2. MCE on different speech unit boundaries

We only apply the word level experiment in this section. The word
graphes are also identically generated. Four values of δt are tested.
The δt = 0 means that we use the strict boundary for calculat-
ing the GPP. From Table 2, we can see that the best performance
happens when we applied the relaxed boundary δt = 1/3(t − s).
As expected, the strict boundary didn’t work as well as the relaxed
boundary. The comparison between two relaxed boundaries show
that the time interval δt = 1/2 is too wide.

Table 2: Word Error Rate (WER) and Sentence Error Rate (SER)
for WSJ0-eval using different boundary constraints

δt WER SER

Baseline 8.41 57.88
δt = 0 8.10 57.27

δt = 1/3(t − s) 8.05 56.97
δt = 1/2(t − s) 8.15 57.58

4.2.3. MCE on different word graphes

We compare the training effect of the MCE method under two
word graphes in this section. The first graph is built using the
configuration listed before, and the second one is generated with the
word insertion penalty to be −8.0 and the language scale factor to
be 4.0. Still, the experiments in this section are only for word-level
training. The relative constraint for word boundary is set to be δt =
1/3(t − s). The second type of word graphes have higher graph
density (i.e., it contains more recognized word candidates) than the
first one because it loosens the constraint of the language model and
the word insertion penalty. We can see that the performance of using
the second type of word graph is slightly better than the first type.
We believe the reason for this observation is that the second type
of graphes contains more competing words. As well known, one
performance bottleneck for the MCE method is that the competing
events may probably be rare so that the GPP is dominated by the
correct likelihoods.

Table 3: Word Error Rate (WER) and Sentence Error Rate (SER)
for WSJ0-eval using different word graphes

WER SER

Baseline 8.41 57.88
p = −14, s = 5 8.05 56.97
p = −8, s = 4 8.01 56.67

5. Conclusions
In this paper, we generalize the training error definitions for mini-
mum classification error (MCE) training and investigate their im-
pact on recognition performance.This paper is the first part of an
extensive generation of the MCE training. The experiments are
conducted based on the framework of “maximizing posterior prob-
ability”. Three factors are investigated. They are: the impact of
different training levels, the impact of different word boundaries,
and the impact of different word graphes. For the first factor, we
observed the best performance in phone level training. For the sec-
ond one, the relaxed word boundary shows better performance than
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xed word boundary, and two different relative constraints are
pared. For the third factor, training using word graphes with

recognized competitors decreases the word error rate in this
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