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Abstract
This paper proposes a constrained structural maximum a posteriori
linear regression (CSMAPLR) algorithm for further improvement
of speaker adaptation performance in HMM-based speech synthe-
sis. In the algorithm, the concept of structural maximum a pos-
teriori (SMAP) adaptation is applied to estimation of transforma-
tion matrices of the constrained MLLR (CMLLR), where recur-
sive MAP-based estimation of the transformation matrices from
the root node to lower nodes of context decision tree is conducted.
We incorporate the algorithm into HSMM-based speech synthesis
system and show that CSMAPLR adaptation utilizes both of the
advantage of CMLLR and SMAPLR adaptation from the result of
objective evaluation test. We also show that CSMAPLR adapta-
tion provides more similar synthetic speech to the target speaker
than CMLLR and SMAPLR adaptation from the result of subjec-
tive evaluation test.
Index Terms: HMM-based speech synthesis, HSMM, speaker
adaptation, average voice model, MLLR.

1. Introduction
To mimic an arbitrary target speaker’s voice using only a small
amount of speech data uttered by the target speaker, we have pro-
posed an HMM-based speech synthesis approach using speaker
adaptation and average voice model [1]-[3]. In this approach, first,
spectrum, fundamental frequency (F0), and duration of several
training speakers are modeled simultaneously in a framework of
HMM, and an average voice model, which models average voice
and prosodic characteristics of the multi speakers, is trained by us-
ing adaptive training for the speaker normalization [2],[3]. Then,
using a speaker adaptation algorithm such as maximum likelihood
linear regression (MLLR) adaptation [4], the average voice model
is adapted to a target speaker using a small amount of speech data
uttered by the target speaker. After the speaker adaptation, speech
is synthesized in the same way as the speaker-dependent HMM-
based speech synthesis method [5],[6].

Furthermore, we have investigated several speaker adaptation
algorithms [7] for the average-voice-based speech synthesis. As
a result, we see that the constrained MLLR (CMLLR) adapta-
tion [8] and the structural maximum a posteriori linear regression
(SMAPLR) adaptation [9] are promising approaches. In this pa-
per, for further improvement of the speaker adaptation, we derive
a constrained structural maximum a posteriori linear regression
(CSMAPLR) adaptation algorithm that integrates CMLLR adap-
tation and SMAPLR adaptation. In the proposed algorithm, the
concept of structural maximum a posteriori (SMAP) adaptation
[10] is applied to the estimation of the transformation matrices of
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LLR, that is, recursive MAP-based estimation of the transfor-
ion matrices is conducted from the root node to lower nodes of
text decision tree. We show results of objective and subjective
uation tests and effectiveness of the proposed algorithm.

CSMAPLR Algorithm for HSMM-based
Speech Synthesis

Speaker Adaptation Based on HSMM

briefly describe speaker adaptation algorithms reformulated
hidden semi-Markov model (HSMM) in [7]. We assume that
speech synthesis unit is modeled by an N -state HSMM λ.
also assume that the i-th state output bi(o) and duration dis-
tions pi(d) are Gaussian distributions characterized by mean
or μi and diagonal covariance matrix Σi, and mean mi and
ance σ2

i , respectively,

bi(o) = N (o; μi,Σi) (1)

pi(d) = N (d; mi, σ
2
i ) (2)

re o is the observation vector and d is the time staying in the
i.
In MLLR adaptation [4], which is the most popular linear re-
sion adaptation, the mean vectors of state output and duration
ributions for the target speaker are obtained by linearly trans-
ing those of the average voice model. However, the transfor-
ion of the MLLR adaptation is applied only to the mean vectors
e initial model. On the other hand, in CMLLR adaptation [8],
mean vectors and covariance matrices of state output and dura-
distributions for the target speaker are transformed at the same
. Since the range of the variation is one of the important fac-
for F0 and CMLLR can tune not only mean values but also
ranges of the variation to the target speaker, CMLLR would
duct more appropriate adaptation of prosodic information.
Meanwhile, to determine the tying topology for the transfor-
ion matrices, we utilize context decision trees [11] in which
stions are related to the suprasegmental features, such as mora,
ntual phrase, part of speech, breath group, and sentence infor-
ion. This is because prosodic feature is characterized by many
asegmental features. In SMAPLR adaptation [9], the concept
MAP adaptation [10] is applied to the estimation of the trans-
ation matrices of MLLR, that is, recursive MAP-based esti-
ion of the transformation matrices is conducted from the root
e to lower nodes of the context decision tree. As a result, we
make better use of the structural information and the supraseg-
tal information which the context decision tree has.
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2.2. Constrained Structural Maximum A Posteriori Linear
Regression

The CMLLR adaptation algorithm utilizes the structural informa-
tion less effectively than the SMAPLR adaptation, whereas the
transformed parameters of the SMAPLR adaptation algorithm is
applied only to the mean vectors of the average voice model. Here
we apply the concept of the SMAP adaptation to the estimation of
the transformation matrices of CMLLR.

In the CSMAPLR adaptation, like the CMLLR adaptation,
mean vectors and covariance matrices of state output and duration
distributions for the target speaker are obtained by transforming
the parameters at the same time as follows:

bi(o) = N (o; ζ ′μi − ε′, ζ ′Σiζ
′�) (3)

= |ζ| N (ζo + ε; μi,Σi) (4)

= |ζ| N (W ξ; μi,Σi) (5)

pi(d) = N (d; χ′mi − ν′, χ′σ2
i χ′) (6)

= |χ| N (χd + ν; μi,Σi) (7)

= |χ| N (Xφ; μi,Σi) (8)

where ζ = ζ ′−1, ε = ζ ′−1
ε′, χ = χ′−1, and ν = χ′−1

ν′.
ξ = [o�, 1]� and φ = [d, 1]�, and W = [ζ, ε] and X = [χ, ν]
are the transformation matrices.

Moreover, in CMLLR, ML-based estimation is used for ob-
taining the transformation matrices, whereas, in CSMAPLR, like
the SMAPLR adaptation, MAP-based estimation is used as fol-
lows:

Λ = (W , X) = argmax
Λ

P (O|Λ, λ) P (Λ) (9)

where W = {W j}M
j=1, X = {X j}M

j=1, Λ = (W , X), and M
is the total number of distributions. P (Λ) is the a priori distribu-
tion for the transformation matrixW and X .

A convenient prior distribution families for P (W ) and
P (X) are the matrix variate normal distributions, matrix versions
of the multivariate normal distribution, defined as follows [12]:

p (W ) ∝|Ω|−(a+1)/2|Ψ|−a/2

exp
˘−1

2
tr(W − H)T Ω−1(W − H)Ψ−1¯

(10)

p (X) ∝|ω|−(b+1)/2|ψ|−b/2

exp
˘−1

2
tr(X − η)T ω−1(X − η)ψ−1¯

(11)

where Ω, Ψ, H , ω, ψ, and η are the hyperparameters for those
distribution families, and a and b are the dimensions of the mean
vector μ and mean m, respectively. H and η are the transforma-
tion matrices of parents node. The scales of the prior distributions
p(W ) and p(X) are controlled by the two hyperparametersΩ,Ψ,
and ω, ψ, respectively. We fix Ψ and ψ to the identity matrices,
Ψ = I ∈ R

(a+1)×(a+1) and ψ = I ∈ R
(b+1)×(b+1). Ω and ω

are set to scaled identity matrices, Ω = C · I and ω = τ · I so
that the scaling is only controlled by scalar coefficients C > 0 and
τ > 0.

Re-estimation formulas based on the Baum-Welch algorithm
of the transformation matrices can be derived as follows:

wl = (αpl + yl)Gl
−1 (12)

X = (βq + z)K−1 (13)
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re wl is the l-th row vector of W , pl = [0, cl], q = [0, 1],
cl is the l-th cofactor row vector of W . Then yl, Gl, z, and
re given by

l =

RbX

r=1

TX

t=1

tX

d=1

γd
t (r)

1

Σr(l)
μr(l)

tX

s=t−d+1

ξ�
s + C ·H(l)

(14)

l =

RbX

r=1

TX

t=1

tX

d=1

γd
t (r)

1

Σr(l)

tX

s=t−d+1

ξsξ
�
s + C ·I (15)

=

RpX

r=1

TX

t=1

tX

d=1

γd
t (r)

1

σ2
r

mr φ�
r + τ ·η (16)

=

RpX

r=1

TX

t=1

tX

d=1

γd
t (r)

1

σ2
r

φr φ�
r + τ ·I (17)

re Σr(l) is the l-th diagonal element of Σr , μr(l) is the l-
lement of the mean vector of μr , and H(l) is the l-th row
or of H . Note that W and X are tied across Rb and Rp

ributions, respectively. Then α and β are scalar values which
fy the following quadratic equations:

α2plG
−1
l p�

l +αplG
−1
l y�

l −
RbX

r=1

TX

t=1

tX

d=1

γd
t (r) d=0 (18)

β2qK−1q�+βqK−1z�−
RpX

r=1

TX

t=1

tX

d=1

γd
t (r)=0. (19)

3. Experiments
Experimental Conditions

valuate the effectiveness of the proposed adaptation algorithm,
onducted objective and subjective evaluation tests for the syn-
ized speech. Six male and four female speakers’ utterances
e taken from the ATR Japanese speech database (Set B) and
male speaker’s utterances were taken from neutral reading
ch used in [13]. Each speaker uttered a set of ATR 503 pho-
cally balanced sentences. We used 42 phonemes including si-
e and pause in modeling. Speech signals were sampled at a
of 16kHz and windowed by a 25ms Blackman window with
s shift. The feature vector consisted of 25 mel-cepstral coef-
nts including the zeroth coefficient, logarithm of F0 (logF0),
their delta and delta-delta coefficients. We used 5-state left-
ight HSMMs without skip path. We chose four males and four
ales as the training speakers for the average voice model. A
der-dependent model was trained using four male speakers,
sentences for each speakers, 1800 sentences in total. More-
a gender-independent average voice model was also trained
g four male and four female speakers, 450 sentences for each
ker, 3600 sentences in total. Target speakers of the speaker
tation were the rest of three male speakers MHT, MTK, and
I who were not used for the training. In the training stage
he average voice models, the shared-decision-tree-based con-
clustering (STC) algorithm and the speaker adaptive training
T) [2],[3] were applied to normalize influence of speaker dif-
nces among the training speakers. Note that all the average
e models have the same topology and the number of distri-
ons by using STC. The total number of distributions in each
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average voice models was 1861 for spectral part, 2309 for F0 part,
and 1121 for phone duration part.

We then adapted the average voice model to the target speaker
using fifty adaptation sentences which were not included in the
training sentences. The gender-dependent average voice model
was used for MHT and MTK, and the gender-independent aver-
age voice model was used for MMI. These choices of the aver-
age voice models were determined based on a preliminary objec-
tive experimental result. The tuning parameters in SMAPLR and
CSMAPLR adaptation algorithm, i.e., the thresholds to control
hyper-parameters of the MAP estimation, were determined based
on a preliminary objective experimental result. The initial prior
densities p(W ) and p(X) at the root node were H = [I ,0] and
η = [1, 0], respectively.

3.2. Objective Evaluations of Speaker Adaptation Algorithms

As the objective evaluation for each speaker adaptation algorithm,
we calculated the target speaker’s mel-cepstral distance between
the spectra generated from each model and those obtained by
means of analyzing the target speaker’s real utterance. In the
distance calculation, silence and pause intervals were eliminated.
And we calculated the root-mean-square (RMS) error of logF0 be-
tween the generated logF0 patterns and those extracted from the
target speaker’s real utterance. The RMS logF0 error was calcu-
lated in the voiced regions only. Fifty test sentences were used for
evaluation, which were included in neither training nor adaptation
data. For the distance calculation, state duration of each model
was adjusted after Viterbi alignment with the target speaker’s real
utterance.

Figure 1 shows the result of the objective test for three target
speakers, MHT, MTK, and MMI. The horizontal axis of the figure
represents the number of transformation matrices, which were de-
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ined by the thresholds, below which the nodes share the same
sformation matrix. As the number of transformation matri-
increases, we can use more information of the tree structures.
ever, when the number of transformation matrices increases
much, the rank-deficient problem occurs in estimation of trans-
ation matrices. And it would decrease estimation accuracy. In
LR and SMAPLR, when the number of the distribution which
es the transformation matrices is less than that of the dimen-
of the feature vector, this problem occurs. On the other hand,
MLLR and CSMAPLR, transformation matrix becomes rank-
cient under the condition that the number of the observation
ences of the adaptation data is less than that of the dimension
he feature vector. Therefore, the rank-deficient problem can
r more easily in MLLR/SMAPLR than CMLLR/CSMAPLR.
From Fig. 1, it can be seen that the CMLLR adaptation is less
itive to the change in the number of transformation matrices
pared with the MLLR and SMAPLR adaptation. This is due
e above condition for the number of transformation matrices.
eover, we can see that the CMLLR adaptation gives better re-
s than the MLLR adaptation on the mel-cepstral distance and
RMS logF0 error when the optimal number of the transfor-
ion matrices is chosen. This is due to the fact that the CM-
adaptation can tune not only the mean values but also the
es of the variation to a new speaker. We can also see that the
APLR adaptation gives better results than the MLLR adapta-
. This is due to the fact that the SMAPLR adaptation makes
er use of the structural information and the suprasegmental in-
ation than the MLLR adaptation. Furthermore, we can see
the CSMAPLR adaptation gives better results than the CM-
and SMAPLR adaptation. As a consequence, we can confirm
the results were improved by using the CSMAPLR adapta-
compared with using the CMLLR and SMAPLR adaptation
rately.
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(a) Target speaker MHT (b) Target speaker MTK (c) Target speaker MMI

Figure 1: Objective evaluation of speaker adaptation algorithms.



MLLR

CSMAPLR

SMAPLR

CMLLR

0 20 40 60 80 100

Score[%]

(a) Target speaker MHT

MLLR

CSMAPLR

SMAPLR

CMLLR

0 20 40 60 80 100

Score[%]

(b) Target speaker MTK

MLLR

CSMAPLR

SMAPLR

CMLLR

0 20 40 60 80 100

Score[%]

(c) Target speaker MMI

Figure 2: Subjective evaluation for voice characteristics of synthe-
sized speech.

3.3. Subjective Evaluation of Speaker Adaptation Algorithms

We evaluated the voice similarity of the synthesized speech gener-
ated from the adapted models by a paired comparison test. Seven
subjects were first presented with a reference speech sample, and
then a pair of the synthesized speech samples generated from
two adapted models chosen from MLLR, CMLLR, SMAPLR, and
CSMAPLR in random order. The subjects were then asked which
sample was closer to the reference speech. The reference speech
was synthesized by a mel-cepstral vocoder. For each subject, eight
test sentences were randomly chosen from fifty test sentences,
which were contained in neither training nor adaptation data. The
thresholds to control the number of transformation matrices were
determined based on the result shown in Fig. 1.

Figure 2 shows the preference scores. A confidence interval
of 95 % is also shown in the figure. The results confirm that the
CSMAPLR adaptation also provides more similar synthetic speech
to the target speaker than other adapted models.

4. Conclusions
This paper has proposed CSMAPLR adaptation algorithm which
integrated CMLLR and SMAPLR for average-voice-based speech
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hesis. From the results of objective and subjective evaluation
, we have shown that the advantages of the proposed speaker
tation algorithm. In this paper, variance adaptation was per-
ed only in constrained cases. Thus comparison of constrained
hod with unconstrained method using the variance adaptation
be our future work. Proposal of a new speaker adaptation al-
thm which provides a reduction of dependency on the number
ansformation matrices will also be done in the future.
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