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Abstract
This paper describes the use of combined linear regression and ex-
post MAP methods for average-voice-based speech synthesis sys-
tem based on HMM. To generate more natural sounding speech us-
ing the average-voice-based speech synthesis system when a large
amount of training data is available, we apply ex-post MAP esti-
mation after the linear transformation based adaptation. We inves-
tigate how the amount of data used in the training of the average
voice model and the tying topology affect the naturalness of syn-
thetic speech. From the results of evaluation tests, we show that
the adapted average voice model trained using a large amount of
data can generate more natural sounding speech than the speaker
dependent model.
Index Terms: HMM-based speech synthesis, HSMM, average
voice model, speaker adaptation.

1. Introduction
For the purpose of achieving speech synthesis with an arbitrary
speaker’s voice, we have proposed a statistical speech synthesis
approach based on average voice model and speaker adaptation
[1],[2]. Using a speaker adaptation algorithm based on linear
transformation, this approach enables us to synthesize more nat-
ural sounding speech than a method based on speaker dependent
(SD) model when limited speech data of the target speaker is avail-
able. However, if a large amount of data is available, the average-
voice-based approach might provide less natural sounding speech
than the method based on the SD model. One of reasons for this
is the use of the linear transformation in the speaker adaptation.
Specifically, there is an assumption that the target speaker’s model
is expressed by linear regression of the average voice model. How-
ever, this assumption is not always appropriate and it would cause
model errors.

To overcome this problem, we incorporate a combined ap-
proach [3], or ex-post maximum a posteriori (MAP) estimation,
into the average-voice-based speech synthesis technique [4]. More
specifically, after adapting the average voice model to the target
speaker using a linear transformation-based algorithm, we fur-
ther apply MAP estimation as shown in Fig. 1. The MAP esti-
mation theoretically approaches ML estimation, which is used for
the training of the SD model, as the amount of data increases. In
the average voice model, speech units are modeled using HMMs
whose states are tied, and the tying topology of the model param-
eters depends on the amount of data which is used for training of
the average voice model. As a result, the MAP estimation does not
approach the ML estimation of the SD model due to the difference
of tying topology.
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Figure 1: Modification by the Maximum a posteriori.

In this paper, we first show experimentally that the ex-post
P estimation approaches the ML estimation asymptotically
n the average voice model is adapted using the same tying
logy. Then, we investigate how the amount of data used in
raining of the average voice model and the tying topology af-
the naturalness of synthetic speech. Furthermore, we show
riority of the average-voiced-based technique to the technique
d on the SD model from the results of subjective and objective
uation tests.

2. Relationship between MAP and ML
Estimates

peaker adaptation for speech synthesis, to convert spectrum,
amental frequency (F0), and phone duration appropriately,
utilize a framework of hidden semi-Markov model (HSMM)
5] which is an HMM with explicit state duration probabilities
ad of the transition probabilities. In this paper, we assume
state output and duration distributions are given by Gaussian
ity functions as follows:

bi(o) =N (o; μi,Σi) (1)

pi(d) =N (d; mi, σ
2
i ) (2)

re o, μi, and Σi are observation vector, mean vector and co-
ance matrix of output distribution, and d, mi, and σ2

i are state
tion, mean and variance of state duration distribution, respec-
y.
Here we consider the problem that average voice model and
tation data are given. Let O = (o1, · · · , oT ) be the adapta-
data of length T . We assume that the mean vectors μi and
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Figure 2: Relationship between MAP and ML estimates.

mi are obtained after linear regression based adaptation using the
adaptation data. If we estimate the mean vectors based on EM
algorithm by using the same adaptation data, we obtain ML esti-
mation as follows:

μML
i =

PT
t=1

Pt
d=1 γd

t (i)
Pt

s=t−d+1 os
PT

t=1

Pt
d=1 γd

t (i)d
(3)

mML
i =

PT
t=1

Pt
d=1 γd

t (i)d
PT

t=1

P
d=1t γd

t (i)
(4)

where γd
t (i) is the probability generating serial observation se-

quence ot−d+1, . . . , ot at the i-th state.
In contrast, ex-post MAP estimation can be applied to the

adapted model using the adaptation data. Then, MAP estimation
is derived as follows:

μMAP
i =

τoutμi +
PT

t=1

Pt
d=1 γd

t (i)
Pt

s=t−d+1 os

τout +
PT

t=1

Pt
d=1 γd

t (i)d
(5)

mMAP
i =

τdurmi +
PT

t=1

Pt
d=1 γd

t (i)d

τdur +
PT

t=1

Pt
d=1 γd

t (i)
(6)

where μi and mi are the mean vectors transformed by the linear
regression, and τout and τdur are positive hyper-parameters of the
MAP estimation [6] for the state output and duration distributions,
respectively. We can rewrite (5) and (6) as

μMAP
i =

τout

τout + Γout(i)
μi +

Γout(i)

τout + Γout(i)
μML

i (7)

mMAP
i =

τdur

τdur + Γdur(i)
mi +

Γdur(i)

τdur + Γdur(i)
mML

i (8)

where

Γout(i) =

TX

t=1

tX

d=1

γd
t (i)d (9)

Γdur(i) =
TX

t=1

tX

d=1

γd
t (i). (10)

As a result, the MAP estimate μMAP
i can be viewed as a weighted

average of the adapted mean vectorμi and the ML-estimated mean
vectors μML

i as shown in Fig. 2. Similarly,mMAP
i can be viewed

as that of mi and mML
i . When Γout(i) and Γdur(i) are equal

to zero, i.e., no training sample is available, the MAP estimates
become μi and mi. On the other hand, when a large number of
training samples are used, i.e., Γout(i) → ∞ or Γdur(i) → ∞,
the MAP estimates approach the ML estimates μML

i and mML
i

asymptotically.
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3. Experiments
Experimental Conditions

used the HSMM-based speech synthesis system described in
5]. Speech database used in the following experiments con-
d six male and five female speakers’ speech samples. Each
ker uttered a set of ATR 503 phonetically balanced sentences.
male and four female speakers’ utterances were taken from the
Japanese speech database (Set B) and one female speaker’s
ances were taken from neutral reading speech used in [7]. In
modeling of synthesis units, we used 42 phonemes, includ-
silence and pause. Speech signals were sampled at a rate
6kHz and windowed by a 25ms Blackman window with a
shift. The feature vector consisted of 25 mel-cepstral coef-
nts including the zeroth coefficient, logarithm of F0 (logF0),
their delta and delta-delta coefficients. We used 5-state left-to-
t HSMMs without skip path. As the speaker adaptation algo-
based on linear transformation, we used structural maximum
steriori linear regression (SMAPLR) [8]. Furthermore, we ap-
the ex-post MAP estimation to the linear transformed model
APLR+MAP). Fifty test sentences were used for evaluation,
h were included in neither training nor adaptation data.

Objective Evaluation in Same Tying Topology

first conducted an objective evaluation test for the synthesized
ch. In the training stage of the average voice model, STC and
ker adaptive training (SAT) [1],[2] were applied. We chose
ale speaker MTK as the target speaker. The average voice
el was trained using six male and four female speakers’ data
ding MTK.We constructed the same decision tree common to
raining speakers and the target speaker, and used the obtained
sion tree as the tying topology of the speaker adaptation of
PLR+MAP and ML estimation. By doing this, we can elim-
the influence of the tying topology on the adaptation perfor-
ce of SMAPLR+MAP and ML estimation. The average voice
el was trained using 450 sentences for each speaker, 4500 sen-
es in total. The adaptation data used in SMAPLR+MAP were
sentences of the target speaker included in the training data
the same sentences were used in the ML estimation.
We calculated the target speaker’s average mel-cepstral dis-
e and root-mean-square (RMS) error of logF0. In the dis-
e calculation, silence and pause intervals were eliminated.
re 3 shows the target speaker’s average mel-cepstral distance
een spectra generated from each model and those obtained
nalyzing target speaker’s real utterance, and the RMS logF0
r between F0 patterns of synthesized and real speech. The
zontal axis represents the number of adaptation sentences for
PLR+MAP. It can be seen that both the mel-cepstral distance
the RMS error of logF0 of SMAPLR+MAP converge to the al-
t same values as those of the ML estimation. From this result,
an see that the MAP estimation approaches asymptotically the
estimation by using the same tying topology.

Objective Evaluation in Different Tying Topology

eneral, the amount of training data affects the tying topology of
verage voice model. Thus we evaluated here the influence of
amount of training data on the average voice model by an ob-
ve evaluation test for synthesized speech. We chose five males
four females as the training speakers for the average voice
el, and chose MTK and FTK as the target speakers who were
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Figure 3: Objective evaluation of SMAPLR+MAP estimation and
ML estimation using same tying topology.

not included in the training speakers. The training method of the
average voice model was the same as 3.2. The average voice mod-
els were trained using from 50 to 450 sentences for each speaker
with increments of 50 sentences, that is, from 450 to 4050 sen-
tences in total. We used different sentence set for each speaker
as the training data to avoid dependency on the context. Adapta-
tion data was a set of 450 sentences of the target speaker. We also
trained the SD models by the ML estimation using the same 450
sentence set of the target speakers. Note that the average voice
models and the SD models have their own tying topology of the
model parameters.

Figures 4 and 5 are the results of the objective test. From these
figures, it can be seen that both the mel-cepstral distance and RMS
error of logF0 of synthesized speech generated from the adapted
model become closer to the target speakers’ as the the number of
training data for average voice model increases. Especially, when
the number of training sentences of the average voice model is
more than 1350, the adapted model gives better results than the SD
model on the RMS logF0 error as shown in Fig. 4. Moreover, we
can see that adapted model is closer to the target speaker’s logF0
distance than the SD model even when the number of training sen-
tences is 450 in Fig. 5.

3.4. Subjective Evaluation in Different Tying Topology

We finally conducted a comparison category rating (CCR) test to
evaluate the naturalness of the synthesized speech using each av-
erage voice model and SD model. The average voice models and
SD models used in this test were the same as 3.3. The subjects
were first presented with synthesized speech generated from the
SD model as reference, then presented with a speech sample cho-
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Figure 4: Objective evaluation of the target speaker MTK.

randomly from generated speech using the adapted average
e models. The subjects were then asked to rate its naturalness
paring to that of the reference speech. The rating was done
g a five-point scale, that is, −2 for much more natural, 0 for
st the same, and +2 for much less natural. For each subject,
t test sentences were randomly chosen from 50 test sentences,
h are contained in neither training nor adaptation data. Fig-
show the results of the CCR test. From this figure, we can see
the scores of synthesized speech using the average voice mod-
re higher than that of using the SD model when the number of
ing sentences is more than 1350. This result is consistent with
act in objective test that the adapted model gives better results
the SD model on the RMS logF0 error when the number of
ing sentences of the average voice model is more than 1350.

Discussion

the subjective and objective evaluation tests described in the
e, we have seen that we can synthesize more natural sounding
ch and closer to the target speaker’s feature of logF0 by in-
sing the training data for the average voice model. One reason
his is the difference of the tying topology of model parameters.
ee this, we show the the number of leaf nodes of decision tree
ig. 7 when changing the number of training sentences for the
age voice model. In the figure, we also show the number of
nodes of decision tree which is used in the SD model. The SD
el was trained using 450 sentences of the target speaker. We
see that the number of leaf nodes increases with increasing the
ber of training data for the average voice model, and the tying
logy of model parameters becomes larger and more complex.
refore, it is thought that the average voice model can reflect
e information in the tying topology than the SD model.
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Figure 5: Objective evaluation of the target speaker FTK.

4. Conclusions
We have shown the effectiveness of using combined linear regres-
sion and MAP modification methods for HMM-based speech syn-
thesis. We have also shown that the MAP estimation approaches
asymptotically ML estimation by using the same tying topology.
Furthermore, we have examined the influence of the amount of
training data for average voice model on the adaptation perfor-
mance. From the results of subjective and objective evaluation
tests, we have shown that the adapted average voice model trained
using a large amount of data can generate more natural sounding
speech than the SD model.
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