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Abstract
This paper presents a novel algorithm for forming coherent

harmonic fragments from a mixture of speech sources. A multi-
ple pitch detection algorithm is used to produce pitch candidates
which are tracked using a pair of parallel HMMs. One novel
aspect of the technique is that it systematically models pitch
doubling and halving errors, thereby facilitating the identifica-
tion of smooth pitch segments even in the absence of the fun-
damental frequency. The system does not face the problem of
incorrect source assignment that can occur when sources have
similar fundamental frequency or are harmonically related. An
evaluation of the technique shows that the algorithm’s emphasis
on tracking coherent segments leads to the formation of speech
fragments with high coherence, indicating a more reliable seg-
mentation of the harmonic speech regions.
Index Terms: multiple pitch detection, source separation

1. Introduction
The challenge addressed is the detection of harmonic regions
in sounds combined over a single communication channel. Of
particular concern are mixtures where one or more source is
speech. The goal is usually to isolate regions dominated by a
single source for use in re-synthesis or automatic speech recog-
nition. This work is concerned with segmenting speech into
fragments (spectro-temporal regions that can be assigned to a
single source) to be used for recognition of the sources in the
mixture. The framework is such that an arbitrary number of
sources can be segregated, however the current study focuses
on forming fragments from speech mixed with speech from a
single talker.

It has long been recognised that both top-down and bottom-
up processes must interact in order to accurately group frag-
ments of speech and assign them to a single source [1]. Rather
than using harmonicity as the sole criteria for segment grouping
(bottom-up grouping), the grouping process should be informed
by a top-down technique that takes into account the information
available from a rich spectral representation of speech.

The multipitch tracker presented uses a novel Hidden
Markov Model (HMM) based pitch tracking algorithm to per-
form bottom-up decomposition of mixed speech into harmonic
segments thought to belong to a single source. These segments
(regions of continuous voicing divided by unvoiced regions) are
transformed into coherent spectro-temporal fragments - a coher-
ent fragment is one completely dominated by a single source.
The coherence of speech fragments is extremely important - it
is better to produce a completely coherent fragment which can
be directly assigned to a single source than to produce an in-
coherent one that cannot be correctly assigned to any source.

This work was funded by EPSRC grant GR/R47400/01
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e top-down grouping can be performed by the Speech Frag-
nt Decoder (SFD), which, accepts coherent fragments and
kes simultaneous grouping and word-sequence decisions us-
information contained in HMM models of speech [2]. In
past, fragments were developed using processes that tracked
h across the entire utterance emphasising the formation of
plete pitch tracks for each source [3]. While the current

orithm also forms complete pitch tracks it goes further in at-
pting to maximise the coherence of each voiced segment.

2. The Multipitch Tracker
chematic of the system is shown in Figure 1. The focus of
paper is the multipitch tracker (MPT) which uses compu-

onal models of primitive auditory scene analysis to extract
ced speech regions.

. Pitch Detection

autocorrelogram (ACG) based multiple pitch detection al-
ithm (MPDA) is used to detect all the relevant pitch periods
sent in the signal. The sampled mixture is passed through a
channel gamma tone filter bank spaced equally on an equiv-
nt rectangular bandwidth (ERB) rate scale with centre fre-
ncies between 50 and 8000 Hz. The signal is then framed

ng a 35 ms window with a 10 ms frame shift. The filter
put is used for direct computation of the ACG while the en-
ope of the filter response is used to compute the envelope
G (eACG). The envelope response is computed because of
generally unresolved harmonics of high frequency channels

ich tend to be amplitude modulated with a beating response
responding to the fundamental frequency of the signal. A
malised summary ACG (sACG) is then computed from the
frequency channels of the ACG. The peaks from the sACG

t exceed an empirically derived threshold θs are stored. Up
our peaks are stored in an effort to minimise information loss
m the signal.
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Figure 1: Schematic of the fragment generation system.
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Figure 2: Illustration of the threshold for pitch doubling and

halving in female speech. The data to the left of the line repre-

sent points where the pitch at time t is at least twice the pitch at

time t −1 (doubles). To the right of the line the pitch at time t
is at most half the pitch at time t −1.

2.2. Modelling Pitch Dynamics

The pitch candidates output by the sACG are assumed to be gen-
erated by a number of Markov processes separated into those
which generate the correct pitch tracks and those that output a
number of distractor observations. The full system requires the
modelling of both types of process.

Each pitch track is generated by a two state HMM with tran-
sition probabilities p(v | v), p(v | u), p(u | v), p(u | u), where v
and u represent the harmonic and inharmonic condition, respec-
tively. The tracker works in the log domain, thus an observation,
ft , at time t is transformed to f ′t = log2( ft). In the harmonic
state, an observation at time t is drawn from p( f ′t | f ′t−1) if the

previous observation is harmonic or p( f ′t ) if it is inharmonic 1.
In order to capture pitch segments from N sources simultane-
ously, N models are run in parallel.

The distractor points are modelled by an independent noise
model - p(dn) - where each point is assumed to be an identi-
cal, independently distributed (iid) random variable. The noise
model generates all the observations not generated by the pitch
track models. The number of distractor points in each frame fol-
lows a distribution, p(Nd) represented as a histogram of prob-
abilities. Gender dependent distributions of pitch dynamics are
estimated from clean speech by analysing the pitch of the utter-
ances in the AURORA 2 training set [4]. These pitches are cal-
culated by running the above-mentioned pitch finding algorithm
and choosing the two highest peaks in the sACG as the pitches
of the sources. Drawing an observation from p( f ′t | f ′t−1) is

statistically equivalent to adding a difference, D = f ′t − f ′t−1 to

f ′t−1, with D being drawn from the distribution p(D | f ′t−1). The
difference D, is the per-frame pitch change and is expressed as

the ratio of neighbouring log pitch estimates log2(
ft

ft−1
). The

ratio will remain within a band of values close to 0, except
where there is pitch doubling or halving; where the values will
be closer to 1 (doubles) and −1 (halves). A plot of D against
f ′(t −1) (Figure 2) shows that pitch doubling is more likely to
occur at values below d pt - approximately log2(148Hz) - while
halving occurs at higher values. The generative model can be

1Here p( f ′t ) represents the prior distribution of pitch values in the

data set while p( f ′t | f ′t−1) captures the per-frame pitch dynamics.
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roximated by two separate distributions: pdouble( f ′t−1) for

ues of f ′t−1 less than d pt and phal f ( f ′t−1) for higher log pitch
ues. These distributions are modelled by Gaussian mixture
dels (GMM) estimated from the training data. The centres
the components are set to −1, 0 and 1, while the variances
weights are estimated using maximum likelihood. The prior

tribution of pitch values is also estimated using a mixture of
usasians. HMM state transition probabilities are calculated
male and female speech using the log transformed data. The
sition probabilities capture the dynamics of voicing; how
ly is it that voicing will begin, continue or end.

For noise model estimation, the peaks of the sACG (up
four peaks) with values above θs are chosen. The value
θs acts as a threshold for source voicing. Peaks above this
ue indicate output from a voiced source. For each frame, the
ks that correspond to the a priori pitch of the two sources
removed; the remaining peaks are used to build the noise

del distribution. A priori pitch estimates are obtained for
h source by tracking the pitch of the unmixed signals using
ck (an open source version of ESPS/waves+) [5]. The pitch
resented by a peak from the sACG is considered to match
a priori pitch if it lies between ±5% of the a priori pitch.

is accounts for the potential variation brought about by mix-
the sources. A Gaussian mixture model is used to estimate
distribution of distractor points. The number of noise points
aks that remain after the removal of the pitch peaks) is cal-
ated for each frame and the probability of different numbers
oise points per frame, p(Nd), is calculated.

. Tracking Segments

e algorithm is implemented to track the pitches of a mixture
two speakers’ speech. For this condition, peaks with val-
above θs (set to 0.8) are chosen from the sACG and used

he pitch tracking algorithm. A maximum of four peaks are
sen for each frame. Within a frame, there are either two,
or no active pitch sources; similarly, the number of distrac-
points may vary. All the possible interpretations of a set

observations is considered with the exception that no single
didate is assigned to both sources simultaneously. Consid-
g 4 peaks the possible interpretations are: both speakers are

the unvoiced state and all observations are due to the noise
del (1 interpretation); only speaker 1 is voiced and accounts
1 of the 4 observations (4 interpretations); only speaker 2
oiced accounting for 1 observation (4 interpretations); both
akers are voiced and 2 peaks are noise (4×3 interpretations).
ere a source is hypothesised to have entered the unvoiced

te, the inclusion of the noise model keeps the number of
s in the probability calculation constant. For two neigh-

ring frames, all combinations of candidates are considered
a score is generated for each combination. A lattice of hy-

heses is formed and the best path through the pitch space is
culated using the Viterbi algorithm. The path describes the
st likely interpretation of the observations, assigning obser-
ions to models and indicating the state of voicing for each
ech region. Each pitch track is a sequence of continuously
ced segments divided by unvoiced regions. Figure 3 shows a
ical result of the outlined process. Each segment is deemed
e coherent (i.e. belong to a single source).

. Fragment Generation

h pitch segment generated by the MPT is associated with a
gment of speech; the aim of the fragment creation process is
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Figure 3: The pitch segments (top) and fragments formed from

them (bottom) are shown for a mixture of male and female

speech. The distractor points that the noise model has produced

are overlaid. The segments marked A and B show where the

sub-harmonic is tracked, continuing the segment, in the absence

of the fundamental due to the inclusion of a model of pitch dou-

bling and halving. Notice also that overlapping segments pro-

duce separate fragments even when the sub-harmonic is tracked.

to produce a set of coherent fragments (fragments completely
dominated by a single source). The fragment is constructed in
a frame by frame process where each channel of the ACG and
eACG are examined for peaks that match to either (or both) of
the pitch candidates output by the MPT. If the peaks detected
in a channel match candidates from the MPT, then that chan-
nel is considered to be reliable for that frame. Figure 3 shows
the fragments derived from each segment of voiced speech -
each fragment is a different shade of grey. When there are two
sources active in a frame the source with the highest peak is
chosen as the dominant one. The decision however, has to be
softened because the dominance of a source within that chan-
nel is not assured. Rather than expressing total confidence in
the dominance of the chosen source, a soft decision is made
by considering the relative contributions of both sources in the
channel (for details see [6]). For the purpose of fragment de-
coding a soft mask is built up using the soft values for each
spectro-temporal point. This is useful for fragment decoding
where the recogniser applies the soft value as a weight on the
dominance of a given source i.e., to what extent it is masked. In
the soft mask, each spectro-temporal point is assigned a value
between 0.5 and 1 where completely dominant points are as-
signed a ‘1’. A value of ‘0.5’ indicates that both sources were
equally energetic and the decoder has to choose which is more
likely to have generated the fragment.

3. Evaluation
3.1. Fragment Size and Coherence

The pitch segments generated from the MPT are used to gen-
erate fragments which are evaluated for their coherence. The
coherence of a fragment is calculated by comparing it to the
a priori mask of each unmixed source. Each fragment usu-
ally matches one source more than the other. If the fragment
fits within the boundaries of a single source without overlap,
it is 100% coherent. Otherwise its coherence is calculated by:
100×∑wi/(∑w′

i + ∑wi), where the wi are soft values of the
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gment which fall within the boundaries of the mask it best
and the w′

i are the soft values which overlap the other mask.

Experiments are performed using simultaneous
aker data constructed from the Grid corpus [7].
e Grid corpus consists of utterances spoken by

speakers reading sentences of the form: <com-
nd><colour><preposition><letter><number><adverb>
., “place white at L 3 now”. In the present study pairs of
-pointed utterances have been artificially added at a range

target-masker ratios (TMR). The test set has 600 utterance
rs at each TMR: 200 same speaker, 200 same gender (but
erent speakers), and 200 mixed gender.

The effect of segment grouping on fragment coherence is
estigated using 100 utterances randomly selected from the
t set. The voiced segments of each utterance are treated as
lated ‘pitch tracklets’ and three separate grouping mecha-
ms are applied creating three separate sets of fragments. For
first set no post-processing (NP) is applied to the segments;

ew fragment is formed whenever there is a break in voicing.
the second set (CL) a simple clustering algorithm groups

h voiced segment creating two continuous pitch tracks from
ich two fragments are formed, one for each source. The
d set is formed by partial grouping (PG), where neigh-
ring tracklets are grouped if their absolute pitch difference
within a distribution of absolute pitch differences estimated

m training data. The coherence of fragments formed from all
ee techniquess is compared. The coherence values presented
an average for all fragments in the utterance.

0 dB 6 dB
Frag. Size Coherence Frag. Size Coherence

L 3380.7 61.5 3312.1 61.7

G 377.3 74.9 369.0 74.5

P 317.3 77.4 308.6 77.6

le 1: A comparison of average fragment coherence and frag-

nt for three algorithms at different TMRs. NP is the sys-

presented, which does no post-processing on the segments.

uses clustering to produce two segments while PG groups

ghbouring segments based on f0 difference

Table 1 reveals an inverse relationship between coherence
fragment size. Smaller fragments are (in general) more co-

ent than larger ones; this relationship holds across different
Rs, indicating that sequential grouping constraints which

ploy only f0 dynamics can have a detrimental effect on frag-
nt coherence. The process which grouped segments across
entire utterance (CL) produced the least coherent fragments
wing that assigning segments to sources without top-down
wledge can produce fragments in which sources signifi-
tly overlap. Even minimal grouping (PG) can negatively
ct coherence. It is worth noting that the fragments retain

ir coherence even as TMR decreases from 6dB to 0dB.

. Fragment Coherence and Speech Recognition

hough the fragments generated by the MPT are useful for
ech recognition, speech fragment decoding is not the focus
this paper (for a full set of recognition experiments on the
d corpus using fragments generated by the MPT see [8]).
wever, the relationship between coherence and recognition
res can be examined by comparing the scores achievable



when fragments are correctly grouped with those obtained by
decoding a set of completely coherent fragments. The grouping
is done using a priori masks of the unmixed sources to group the
subset of fragments that best match each source. Three types of
fragments are presented: i) completely coherent fragments (CC
in figure 4), where all regions belong to the target source, ii)
fragments formed from the complete tracks (CT) output by the
MPT - one fragment per source and iii) fragments formed from
the continuous voiced segments (VS) - potentially several frag-
ments per source. Completely coherent fragments are generated
by removing the regions of each grouped subset of iii) that are
outside the boundaries of the mask it best matches.

The utterances in the Grid corpus test set are mixed such
that the ‘colour’ for the target utterance is always ‘white’; the
masking utterances never contain the ‘colour’ ‘white’. The task
is to recognise the letter and digit spoken by the target speaker
(i.e. by the person who says ‘white’). Speaker dependent word-
level HMMs were trained for each of the 34 speakers in the
corpus. The words were modelled with a straight-through, no
skip topology using 12 states each and 7 diagonal covariance
Gaussians. Missing data decoding was performed on the entire
test set using the grouped fragments and a grammar reflecting
that the target always spoke the colour ‘white’.
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Figure 4: A three way comparison of speech recognition scores

for fragments formed from complete bottom-up pitch tracks

(CT) with fragments formed from voiced segments (VS) and

completely coherent fragments (CC).

Figure 4 clearly shows that coherence directly affects
recognition scores. The difference in scores for the conditions
is due solely to coherence as all three were decoded under
the same conditions. As suggested by section 3.1 the smaller
fragments formed from continuous voiced segments (VS) are
more coherent than fragments formed from the complete tracks
(CT). The more coherent fragments yield higher accuracy. This
underscores the importance of ensuring the coherence of seg-
mented speech. The results also show the potential for detect-
ing speech segments in mixtures of same gender sources, as
even the most difficult case (Same Speaker) shows reasonable
accuracy for the fragments formed from the segmented tracks.

4. Discussion
The MPT is shown to produce highly robust pitch segments
leading to the production of coherent fragments. It has also been
shown that greater coherence leads to better recognition results.
The algorithm presented performs well even when a multiple or
sub multiple of the fundamental is detected as these are neither
corrected nor ignored, but incorporated into the segment where
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ropriate. This is done for two reasons. Firstly to avoid errors
incorrect segment assignment or the complete ommission of
ments. The second reason is linked to the end use of the
ments. For speech recognition, if a fragment of speech is
racted from a mixture based on the harmonics of a source

not the fundamental, the same information will be made
ilable to the decoder. Other multipitch algorithms (e.g., [9])
y not be suitable for fragment generation because of potential
rce assignment errors that can occur when sources are har-
nically related or when the fundamental is missing (below
voicing threshold or completely absent). By emphasising
coherence of each segment, the algorithm presented lessens
probability of such errors occurring.
There are however, several issues that require closer atten-
. Firstly the MPT’s tuning parameters: the voicing thresh-
θs and the halving/doubling threshold d pt . Experiments

e shown that d pt can be varied within a small range of val-
without significantly affecting performance. The voicing

eshold determines which regions of speech are harmonic. If
is set too high, smoother segments may be formed but less

ormation is retrieved from the sACG; if set too low, and more
tractor points will emerge. If a source is strongly harmonic
east one of its harmonics will be present in the summary. By
ining several peaks the current method attempts to detect it.
The assumption that pitch segments are generated by a

t order Markov process produces good results, however the
mework can readily be extended to model the pitch trajectory
ng a second order Markov model. Further, using Gaussians

odel the pitch dynamics leads to an imperfect fit. However,
a first approximation it provides reasonable results. The as-

ption that the distractor points are iid noise does not account
the relationship between the distractors and the pitch. There
cope for addressing this in the form of a re-estimation of the
del parameters. Whilst this will be a further approximation,
ay serve to improve the models in a systematic way.

5. References
C.J. Darwin and C.E. Bethell-Fox, “Pitch continuity and
speech source attribution,” Journal of Experimenal Psy-
chology: Human Perspective and Performance, vol. 3, no.
4, pp. 665–672, 1977.

J. Barker, M. Cooke, and D. Ellis, “Decoding speech in the
presence of other sources,” Speech Communication, vol.
45, pp. 5–25, 2005.

A. Coy and J. Barker, “Recognising speech in the presence
of a competing speaker using a ‘speech fragment decoder’,”
in Proc. ICASSP ’05, 2005, vol. 1, pp. 425–428.

H.G. Hirsch and D. Pearce, “The Aurora experimental
framework for the performance evaluation of speech recog-
nition systems under noisy conditions,” in Proc. ICSLP ’00,
2000, vol. 4, pp. 29–32.

K. Sjolander, “The snack sound toolkit version 2.2b1,
http://www.speech.kth.se/snack/,” 2002.

A. Coy and J. Barker, “Soft harmonic masks for recog-
nising speech in the presence of a competing speaker,” in
Proc. Interspeech ’05, 2005, vol. 1, pp. 2641–2644.

M.P. Cooke, J. Barker, S. P. Cunningham, and X. Shao, “An
audio-visual corpus for speech perception and automatic
speech recognition,” Journal of the Acoustical Society of
America, submitted.

J. Barker and A. Coy, “Recent advances in speech fragment
decoding techniques,” in Proc. ICSLP 2006, accepted.

M. Wu, D.L. Wang, and G.J. Brown, “A multipitch tracking
algorithm for noisy speech,” IEEE Transactions on Speech
and Audio Signal Processing, vol. 11, pp. 229–241, 2003.


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Andre Coy
	Also by Jon Barker
	------------------------------

