
Nonlinear Dynamical Invariants

S. Prasad, S. Srinivasan, M. Pannuri,

Center for Advanced Veh
Mississippi State Univers

{prasad, srinivas, pannuri, glaz, 

Abstract
There is growing interest in modeling nonlinear behavior in the 
speech signal, particularly for applications such as speech
recognition. Conventional tools for analyzing speech data use 
information from the power spectral density of the time series, 
and hence are restricted to the first two moments of the data. 
These moments do not provide a sufficient representation of a
signal with strong nonlinear properties. In this paper, we 
investigate the use of features, known as invariants, that
measure the nonlinearity in a signal. We analyze three popular 
measures: Lyapunov exponents, Kolmogorov entropy and 
correlation dimension. These measures quantify the presence
(and extent) of chaos in the underlying system that generated
the observable. We show that these invariants can discriminate
between broad phonetic classes on a simple database consisting
of sustained vowels using the Kullback-Leibler divergence
measure. These features show promise in improving the 
robustness of speech recognition systems in noisy
environments.
Index Terms: Lyapunov exponents, fractal dimension, 
correlation entropy, speech recognition, nonlinear system.

1. Introduction
Speech recognition systems today still exploit the linear 
acoustics model of speech production, and rely on traditional
measures of the spectrum based on Fourier transforms. Though 
applications of machine learning to speech recognition have 
made great strides in recent years, high performance speech
recognition systems are still sensitive to mismatches in training
and evaluation conditions, or dramatic changes in the acoustic
environments in which they operate. We refer to this as the 
robustness problem – can a speech recognition system achieve 
high performance on noisy data that has not been observed
during training? Our goal in this work is to produce new
features for speech recognition that do not rely on traditional 
measures of the first and second order moments of the signal. 

Dynamical systems can be represented by state-space
models, where the states of the system evolve in accordance
with a deterministic evolution function, and the measurement 
function maps the states to the observables. The path traced by
the system’s states as they evolve over time is referred to as a 
trajectory. An attractor is defined as the set of points in the 
state space that are accumulated in the limit as t .
Invariants of a system’s attractor are measures that quantify the 
topological or geometrical properties of the attractor, and are
invariant under smooth transformations of the space. These 
smooth transformations include coordinate transformations such 
as Phase Space Reconstruction of the observed time series [1].
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These invariants are a natural choice for characterizing the
tem that generated the observable. These measures have 
n previously studied in the context of analysis and synthesis
earch [1][2] and more recently in the context of speech
ognition [3]. In this paper, we review algorithms to extract
se invariants using a pilot database consisting of elongated 
nunciations of a small set of phones, and study
criminability in a feature space comprised of these invariants.
Lyapunov exponents [4] associated with a trajectory

vide a measure of the average rates of convergence and
ergence of nearby trajectories. Fractal dimension [5] is a
asure that quantifies the number of degrees of freedom and

extent of self-similarity in the attractor’s structure. 
lmogorov entropy [5] defined over a state-space, measures
rate of information loss or gain over the trajectory. These 

asures search for a signature of chaos in the observed time
ies. Since these measures quantify the structure of the 
erlying nonlinear dynamical system, they are prime
didates for feature extraction of a signal with strong 
linearities.
Our long-term goal in this research is to model phones using
amical systems, where the state-space that generated the 
erved acoustic sound corresponds to a unique configuration
the articulators and the driving process. Since each 
figuration corresponds to a unique attractor in the phase 
ce, it is expected that the invariants extracted from different 
nes will mirror differences in the corresponding attractors.
Lyapunov exponents [3] have been employed as features in 

honetic recognition system, and studied in combination with 
ventional cepstral features. In this paper, we extend the 
lysis to three standard invariants of a dynamical system. The 
tivation behind studying such invariants from a signal 
cessing perspective is to capture the relevant nonlinear 
amical information from the time series – something that is 
ored in conventional spectral-based analysis.
The outline of this paper is as follows. In Section 2 we 

iew phase-space reconstruction techniques and the 
orithms we employed for the extraction of three dynamical
ariants from a time series. In Section 3, we describe the 
erimental setup. We also explain the choice of various 
ameters involved in the estimation of the invariants from 
ech data. In Section 4, we present the results of extracting 

invariants from speech data, and quantify the 
criminability of these invariants across phonetic attractors
ng the Kullback-Leibler divergence measure.

2. Nonlinear Dynamical Invariants 
characterize the structure of the underlying strange attractor 

m an observed time series, it is necessary to reconstruct a
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phase space from the time series. This reconstructed phase
space captures the structure of the original system’s attractor 
(the true state-space that generated the observable). The process
of reconstructing the system’s attractor is commonly referred to 
as embedding.

The simplest method to embed scalar data is the method of
delays. In this method, the pseudo phase-space is reconstructed 
from a scalar time series, by using delayed copies of the original 
time series as components of the RPS. It involves sliding a 
window of length m through the data to form a series of vectors, 
stacked row-wise in the matrix. Each row of this matrix is a
point in the reconstructed phase-space. Letting  represent

the time series, the reconstructed phase space (RPS) is
represented as:
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where m is the embedding dimension and is the embedding 
delay.

Taken’s theorem [4] provides a suitable value for the 
embedding dimension, . The first minima of the auto-mutual
information versus delay plot of the time series is a safe choice
for embedding delay [4].

m

2.1. Lyapunov Exponents 
The analysis of separation in time of two trajectories with 
infinitely close initial points is measured by Lyapunov
exponents [4]. For a system whose evolution function is defined
by a function f, we need to analyze

)0()()0()( xf
dx
dxtx N  .   (2) 

To quantify this separation, we assume that the rate of growth 
(or decay) of the separation between the trajectories is
exponential in time. Hence we define the exponents, i as

)J(p)eigln(1
lim

n

0p
inn

i  ,   (3) 

where, J is the Jacobian of the system as the point p moves
around the attractor. These exponents are invariant
characteristics of the system and are called Lyapunov
exponents, and are calculating by applying (3) to points on the 
reconstructed attractor. The exponents read from a reconstructed 
attractor measure the rate of separation of nearby trajectories
averaged over the entire attractor. 

2.2. Fractal Dimension
Fractals are objects which are self-similar at various resolutions.
Self-similarity in a geometrical structure is a strong signature of 
a fractal object. Correlation dimension [5] is a popular choice
for numerically estimating the fractal dimension of the attractor.
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power-law relation between the correlation integral of an 
actor and the neighborhood radius of the analysis hyper-
ere can be used to provide an estimate of the fractal
ension:

ln
)(lnlimlim

0

CD
N

 ,                                  (4) 

ere )(C , the correlation integral is defined as: 
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ere x is a point on the attractor (which has N such points).
correlation integral is essentially a measure of the number

points within a neighborhood of radius , averaged over the 
ire attractor. To avoid temporal correlations in the time series 
m producing an underestimated dimension, we use Theiler’s 
rection for estimating the correlation integral [5].

. Kolmogorov-Sinai Entropy
ropy is a well known measure used to quantify the amount 
disorder in a system. It has also been associated with the
ount of information stored in general probability
tributions.
Numerically, the Kolmogorov entropy can be estimated as 

 second order Renyi entropy ( ) and can be related to the 
relation integral of the reconstructed attractor [5] as: 

2K

)exp(lim~)( 20
KdC D

d
d  ,                       (6) 

ere D is the fractal dimension of the system’s attractor, d is
 embedding dimension and is the time-delay used for
actor reconstruction. This leads to the relation 
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a practical situation, the values of and are restricted by
 resolution of the attractor and the length of the time series.

d

3. Experimental Setup 
this work, we attempt to extract various nonlinear dynamical
ariants of the underlying attractor from the observed acoustic 
rances. We collected artificially elongated pronunciations of
eral vowels and consonants from 4 male and 3 female 
akers. Each speaker produced sustained sounds (4 seconds
g) for three vowels (/aa/, /ae/, /eh/), two nasals (/m/, /n/) and 
e fricatives (/f/, /sh/, /z/). The data was sampled at 

050 Hz. For this preliminary study, we wanted to avoid 
facts introduced by coarticulation.
The acoustic data from each phoneme is embedded into a

onstructed phase space using time delay embedding with a 
ay of 10 samples. This delay was selected as the first local 
imum of the auto-mutual information vs. delay curve 
raged across all phones.
The choice of an embedding dimension of 5 was made after
erving the plots of the Lyapunov spectra vs. embedding
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dimension over a range of embedding dimensions, and noting 
that the   estimates   of the Lyapunov spectra converge at an
embedding dimension of 5 for most phones, as shown in
Figure 1.

To estimate the Lyapunov spectra from speech data, we
used the algorithm described in [4]. We experimentally found 
the optimal (by varying the parameters and choosing the value 
at which we obtain convergence of the largest Lyapunov
exponent) number of nearest neighbors to be 30, the evolution 
step size to be 5, and the number of sub-groups of neighbors as
15. A more detailed explanation of these parameters can be 
found in [2].

For estimates of Kolmogorov entropy, an embedding
dimension of 15 was used. It is clear from (2) that for reliable
entropy estimates, a high embedding dimension must be used.

As a measure of discrimination information between two 
statistical models representing dynamical information, we chose 
the Kullback-Leibler divergence measure [6]. We measured
invariants for each phoneme using a sliding window, and built 
an accumulated statistical model over each such utterance. The 
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crimination information between a pair of 
dels )(xpi and )(xp j is given by:
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),( jiJ provides a symmetric divergence measure between
 populations i and , from an information theoretic 
spective.  We use as the metric for quantifying the amount 
discrimination information across dynamical invariants 

racted from different broad phonetic classes. 

j
J

4. Results
ure 1 shows the three dynamical invariants extracted from
ious phones using a variety of analysis parameters. For these 
eriments, we chose a window size of 1,500 samples. For the 
of plots (a) through (c) in Figure 1, we vary the value of the 
ghborhood radius (epsilon) and study the variation in 
imated fractal dimension with this parameter. We observe a
(c)

(f)

    a. b. c.

    d. e. f.

    g. h. i.

         Figure 1 Correlation Dimension (a through c), Kolmogorov Entropy (d through f), and Lyapunov Spectra
 (g through i) estimates for a vowel, a nasal and a fricative.
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clear scaling region (where the dimension estimate is unaffected 
by variations in the neighborhood radius) for vowels and nasals
(at epsilon ~ 0.75). Such a scaling region is not present in 
dimension estimates from fricatives. Also note that the estimate
of fractal dimension for vowels and nasals is not sensitive to
variations in embedding dimension from 5 through 8. However, 
the dimension estimate for fricatives increases consistently with 
an increase in the embedding dimension.

A similar trend is observed for plots (d) through (f), 
representing the Kolmogorov entropy estimates as a function of
the embedding dimension. Once again, vowels and nasals have 
entropy estimates that stabilize at an embedding dimension of 
approximately 15. The entropy estimates for fricatives increase
consistently with the embedding dimension. This behavior,
along with the variation in dimension estimates with embedding 
dimension, reaffirms the conventional belief that unvoiced 
fricatives can be modeled using the combination of a noisy
source and linear constant coefficient digital filter. If a time
series were generated from an IID stochastic process, an 
increase in the embedding dimension adds to the randomness in
the reconstructed phase space of this series, and hence leads to 
consistently increasing estimates of fractal dimension and
attractor entropy. In [3], estimates of Lyapunov exponents could 
not be validated for fricatives, which is consistent with our 
observations using fractal dimension and Kolmogorov entropy
estimates.

Plots (g) through (i) depict the Lyapunov spectra as a 
function of various embedding dimensions. Note that the 
positive exponent converges to a stable value at an embedding
dimension of 5. Another technique for estimating the 
appropriate embedding dimension from a time series is the
method of false nearest neighbors [5].

Figure 2 depicts the KL-divergence measure between phone
models formed using the nonlinear dynamical invariants as
features. Equation 3 has a closed form expression for normal 
distributions with different mean vectors and covariance
matrices, which is what we used for estimating these divergence 
measures. We used a sliding window of length 36 ms to extract 
the invariants. The plots in this figure indicate the separation 
between statistical models generated using correlation entropy,
Lyapunov exponents and correlation dimension extracted from 
utterances of all seven speakers. Note that the discrimination
information of these features is high between vowels and 
fricatives and nasals and fricatives. The separation between 
nasals and vowel sounds is small.
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5. Conclusions and Future Work 
this paper, we presented algorithms for extraction of three 
linear dynamical invariants from speech data. We
onstrated the between-class separation of these invariants 

oss 8 phonetic sounds. The results show promise in the 
ential use of these invariants for speech recognition 
lications.
In future work, we plan to study the speaker variability of 

se invariants, hoping that variations in the vocal tract 
ponse across speakers will result in different attractor
ctures, which will be captured by such invariants. We also 

n to perform a pre-filtering of the analysis window before
ming the reconstructed phase space for a more robust 
raction.
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